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Abstract: - In this work we apply the state variable approach in the synthesis of a maximum — likelihood estimator for a
Wiener process modeling a phase noise modulation onto a high frequency carrier to be received by a coherent detector in

the presence of additive noise.

We perform computer simulations on the general estimator and on simplified versions, such as the constant variance and

the phase — locked — loop estimators.
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1 Introduction

In the synthesis of optimum estimators for random
processes the state variable approach is a powerful
technique since it alows the treatment of a wide variety
of signal and noise statistics with nonlinear modulations,
both for analog and digita processing. This technique
has been widely used in the andog and digita
communications theory, together with the maximum —
likelihood principle, yielding estimators that perform
good both for the transient and the steady — state
behaviour.

These estimators are obtained by the mechanization of
the so — caled «estimator» and «variance» equations,
resulting from the maximization of a suitable likelihood
function.

Several works have been reported that use this approach
for the coherent detection of a random process
modulating a carrier inmersed in noise, and
implementable estimator structures have been obtained
for the case when the signal processing is performed in
the intermediate frequency (heterodyne detection). This
allows the filtering of unwanted higher order terms
appearing in the maximum - likelihood estimator
equations due to the quadratic nature of the likelihood
functional.
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In this work we develop the above mentioned technique
for the more complex case of the base — band
processing, this is the homodyne case, which is more
attractive from the power and bandwidth economy point
of view, especialy for angle modulations, such as phase
— shift - keying. However, in this case the higher order
terms must be taken into account, which yields a more
complicated estimator configuration.

We first cast our coherent detection channel model in a
state variable formulation including the random process
generator, the (nonlinear) angle modulation, the noise
addition and the observation process, using the Ito
representation.

We next develop the Fokker — Planck analysis for the
posterior probability of the phase process given the
observable, arriving at non — linear integro — differential
equations for the estimator and variance, which alows
us to mechanize an optimum estimator. Since the
likelihood equation contains higher order terms, this
estimator is highly complex, therefore we perform
computer simulations on the genera estimator and on
simplified versions, such as the uncoupled variance and
the phase — locked — loop systems.

2 The Ito’s calculus for the coherent
channel



Our goal is to obtain an optimum structure for the
estimation of a Wiener process x(t) that constitutes a
phase noise process on an information signal S(t) that
isdigitally modulated by adatatrain Ik
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where Py is the homodyne power.
Let V(t) be an electrical observable resulting from the
received signal inmersed in noisen(t), with white
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Using the Ito’ s calculus with the following definition:
t
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we can cast the expr ion:

spectral density: S (f) = N2°
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Using the Stratonovich representation:
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X(t) is a Wiener process that can be described in the
Ito’ s notation:

dx (t) [rads] :%dv (t) [rads]  (8)
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withx(0)=6, ©being a uniformly distributed
random variable and

t. isthe coherence time

related to the linewidth by:
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3 The maximum - likelihood estimator.

We use the estimator and variance eguations:
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where X(t) isthe MMSE estimate of the process x(t)

given the observation process, and assuming that |
was sent

() = E[x(t)/r,,.1;] (1)

the term (X (t)—%(t))is the estimation error and will

be noted as e(t) , the mathematical expectance E[.] is
with respect to the conditional density of x(t) given the
observation and assuming that |; was sent.

The variance equation is:
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where v(t) is the variance in the estimation of x(t):

v(t):E[(x—kf] (13)
the signal estimate is then:
Sixt1;) = E[sxt) /1,0, ]i=01 (14

The time evolution of the conditional density of the
phase process X(t) is described by the following
(Fokker — Planck) partial differential equation :
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where E denotes the mathematical expectancy with
respect top(x,t/r,,,l;). This equation is not

resolvable or implementable because the mathematical
expectance requires the knowledge of the conditional
density. As afirst approximation, the (mmse) estimator

of the signd S(X,t,lj) is expressed in terms of the
mmse estimate of the phase error as follows:
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with
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where M

After some algebra we arrive at the estimator and
variance equations:
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4 An optimum estimator for gaussian
phase noise.

Using the gaussian statistics approximation for the
phase noise:

M(®)= exp[—%v(t)mz} (20)

After some algebra, the estimator equation becomes:
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and the variance eguation results:
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(22)
* s used to indicate an approximation to the optimum
value for Gaussian statistics

and the signal estimate:
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5 The maximum likelihood receiver.

The estimator and variance equations are used for the
implementation of the maximum likelihood estimator -
correlator receiver. From the input observable we
perform the estimation of the phase process x(t). Since
we have two possibilities for the transmitted data
(logic «1» or logic «O», thisis, Ij= 0 or &), two blocks
of estimators are required. The output from these

estimators S’ (X,t,lj) is used for the correspondent

maximum likelihood cal culator A(I j) described by the

followi ng equation:
t)dt ——JSZ(t /1 ot

Mi)= JS(t 101 Vol
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the outputs A (I i ]are compared to decide if the
received data was alogic «1» or alogic «0», obtaining
the estimated datal .

6 Simulation

Figure 1 is the mechanized block diagram of the
coupled equations. By making severa simplifications
we aso implemented the constant variance and PLL
estimators.

In figure 2 we observe the signals corresponding to the
phase noise for a linewidth of 2 Hz and the
corresponding phase estimators.

In figure 3 we plot only the coupled equations and
constant variance estimators together with the phase
noise.

Finally in figure 4 we plot the difference between the
three estimators and the corresponding phase noise.

7 Conclusion

We have applied the state variable approach to the
problem of finding an optimum estimator for a phase
noise modeled by a Wiener process in a coherent
detection configuration. We arrived at an estimator
structure mechanized by maximizing a suitable
likelihood functional and performed computer
simulations on this structure and simplified ones. We
found that the more complex structure («coupled-
equations») performs better, and the «constant
variance» version performance is acceptable and can
be readily implemented (no need of rea time variance
calculation). However the PLL version does not lead to
acceptable results, this justifying the use of the more
complicated structures that we arrived at in this work.
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Figure 1 Block diagram of the coupled-equations estimator




Figure 2 Plot of phase noise and three estimators




Figure 3 Phase noise,coupled equations and constant variance estimators




Figure 4 Difference between three estimators and phase noise




