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Abstract: - This paper presents an analysis of the dynamic behavior of manufacturing systems, as a basis for the
control study. In this paper we present the special case of an open manufacturing line as an example. We present
an analysis as well as an algorithm for minimizing the overall evolution time of a manufacturing line. The
objective is to study the effect of changing the flow rate of the pieces arriving to the line on the overall
performance of the manufacturing line (settling time, throughput) during the transient and the stationary regions.
The system is modeled by a continuous Petri net receiving an input flow that changes discretely. The change of the
flow rate is due to the control series applied to the model.  IMACS/IEEE  CSCC'99  Proceedings, Pages:2631-2639
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1. Introduction

This paper presents an intermediate step towards a
control theory that could be applied first to
manufacturing lines and which we aim to generalize to
be applied to production systems. It presents a method
for modeling manufacturing systems while conserving
its continuity in order to study its dynamics. At the
beginning the studied system is modeled by a
continuous Petri Net which helps us to describe the
dynamics of the system in the form of differential
equations, each equation describes the evolution of the
number of pieces stocked in the buffers accompanying
each machine in the manufacturing line. Once the
model is obtained and the differential equations are
described we notice that the equations are nonlinear,
which made us think in cutting the evolution or the
lifecycle of the manufacturing process into different
phases. A phase is a time interval where the dynamics
of the system is constant and linear. The phase
variation is marked by the variation of the state
equations of the system, which could be translated in
other words as a change in the dynamics of the
system. The phase could be considered as a sub state
space of the whole state space of the system. A
stationary state is detected when the number of phases

remains constant even with changing the studied
system parameter after that. The use of our approach
helps in applying a control approach after that. Our
study aims to detect a series of source speeds in order
to minimize the evolution time during a phase, to
minimize the number of phase changes and to
maximize the throughput. This paper presents also one
of the steps taken to study the effect of changing the
source speed on the transient and stationary states of
the studied model. Another approach used a lot by
other research groups is the hybrid automata [2],[3]
and [4]. Section 2 presents an introduction to Petri
nets and especially continuous Petri nets, which will
be used in our study. Section 3 presents the
application of Petri nets in the domain of modeling
manufacturing lines. Section 4 presents an algorithm
for constructing the phase space of the evolution of the
system with varying the speed of the source. Section 5
presents the effect of speed profile variation on the
evolution of the system. Different speed profiles are
used and the maximum number of phases is obtained.

2. Petri Nets

The Petri Net is a graphical utility for describing the
relation between events and conditions [7]. It permits



to model the behavior taking into consideration the
sequence of activities, the parallelism of activities in
time, the synchronization of the activities, and the
resource sharing between activities. A Petri Net is an
oriented graph consisting of places [5], transitions and
arcs. The arcs connect between a place and a transition
or vice versa. These arcs indicate the direction of flow
of marks. For a manufacturing system, the different
places of the Petri net model the different buffers of
the system while the transitions model the different
machine [1].

A Petri Net is defined by 4 variables, 2 sets and 2
applications [5] PN = < P, T, Pre, Post>

Where:

P = {P1, P2, ... Pn} is a set of places, T = {T1, T2, ...
Tn}is a set of Transitions.
Pre: P T N (Pi, Tj) Pre (Pi, Tj)=arc weight
between Pi and Tj.
Post: P T N (Pi, Tj) Post (Pi, Tj)=arc weight
between Tj and Pi.

Incidence Matrix: W = [Post (Pi, Tj)]-[Pre (Pi, Tj)]

There are many types of Petri nets, each one models a
particular class of systems, i.e. the timed Petri nets and
the continuous Petri nets. There are two ways of
assigning timing to the timed Petri nets, either by
assigning the timing to the transitions or by assigning
the timing to the places. The timed Petri nets model a
system having the number of marks circulating in the
system is not important. But if this number of marks is
important (explodes) the continuous Petri nets are
used in this case. A continuous Petri Net is a model
where the marking in the places is real and the
transitions are continuously fired [5]. There are two
types of continuous Petri nets. The first is called
constant speed continuous Petri net which is
characterized by having all of its transitions having a

constant firing speed V
d
1

, while the second one is

called variable speed continuous Petri net which is
characterized by having a variable firing speed

V
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3  Modeling A Manufacturing Line
using Continuous PN

In this section we will make use of the continuous
Petri Net model presented in section 3 in the domain
of manufacturing systems. Applying this to an open
manufacturing line having n working benches, a
source, and an output buffer as presented in the
following figure.
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Fig. 1 Open Manufacturing Line

Each bench consists of a buffer and a machine. The
buffers are considered to have finite capacities. The
following Petri Net model models this manufacturing
line:
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Fig. 2 Petri Net Model

The Petri net model presented in Fig 2. models the
open manufacturing line of Fig 1. Where a machine is
modeled by a continuous transition having the same
speed while a buffer is modeled by a continuous place
because as noted before we consider in our system
finite capacity buffers, a buffer i will have the capacity
Cai. An equation for the system's evolution is needed
to be established. This equation must be function in
the initial marking. Initially we consider all places are
empty while the speed vector of the n transitions is
given by:

U = [U1, U2, ... Un].
M0 = [0, 0,0...0]

The flow of pieces entering the system to be
manufactured is defined by the speed of the source
machine given by symbol V. The number of pieces
produced by this system is given by Y.



The differential equations that describes the evolution
of the system are:
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We could notice from the previous equation that it is
nonlinear because of the presence of the function min,
this non linearity led us to define the phase concept.
For the initial state we have all places initially empty
without any marking, we will have the equations:
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Or in matrix form:
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And the output:

VDMCY&
Where:

 

nn

n

UU

U

UU

UU

U

A

1

1

32

21

1

00

0

0

0

0

000

0

0

0

1

B   ,

T

C

1

0

0

0

And 0D

The analysis presented study the effect of changing V
on the system's behavior. The simple analytical
methods can't solve the previous system of equations
because the matrix A could be a singular matrix
depending on the simulated phase. The Maple V5 R5
software allows us to solve numerically such systems
of equations based on the values of A, B,C and D. But
the numerical solution of this system of equations is
not our goal because what we need is an analytical
expression describing the vector M(t). This expression
will be used to define the dynamics of the system
during the phase. Decomposing the function that
caused the nonlinearly which is the min in our case to
its components the result are different equations, each
could be considered to define the dynamics during a
phase. In the next section we will describe the concept
of creating the different phases because the choice is
not that simple because at the same time of choosing
the phases the evolution time during a phase is to be
minimized and the output is to be maximized. So the
goal is not just to cut the lifecycle of the
manufacturing process into different phases but it is
also to minimize these phases duration. Using the
expressions describing the marking of the different
places, the different evolution times are calculated and
then the smallest one is chosen. Choosing the
minimum time of evolution for each phase allows us
after that to construct the control sequence to be
applied to the system to minimize the evolution time
required to reach the desired state. A tool has been
developed using the software tool Maple V5 R5 to
calculate the different evolution times. The tool gives
after that the different phases of the system.

4 The Modeling Algorithm

In this section we present an algorithm for modeling
the manufacturing lines using the phases concept. The
algorithm is as shown in Fig. 3. This algorithm
constructs the phase space for the studied model.

The algorithm starts with constructing the Petri Net
model for the manufacturing line taking into
consideration that a buffer is modeled by a continuous
place and a machine is modeled by a continuous
transition having the same speed. After constructing
the PN model the initial state is defined. Using the
previously defined initial speed a value for the speed
of the source V is chosen. With this value of V, the
evolution time during the first phase is calculated and

If  M0 = [0, 0, 0... 0]



the place that reaches the unity value is chosen.
Assuming that V is a variable, the minimum evolution
time could be calculated depending on V. The
obtained minimum time is called tmin and the
corresponding source speed is Vopt. This procedure is
repeated until a stationary state or the desired state is
reached. When the desired state is reached the phase
schema is constructed in order to predict the evolution
of the studied system. This algorithm assures the
existence of a minimum evolution time. It could also
be considered as a step towards an optimal control
with respect to the evolution time or with respect to
the time to reach a desired state. Something must be
noted here that the speed of the different transitions is
bounded between two given values noted as Vmin and
Vmax. These boundaries or values depend on the
capabilities of the machines. The range of variation of
the speed V also depends on the used source, and the
maximum and minimum production rate produced
from it.

Final
Phase

Construct the PN
model

Define the initial
phase

Change the
Speed V

Yes

No

Search for the
Minimum Time

Construct the Phase
Schema

Fig. 3 The Modeling Algorithm

The previous algorithm uses the differential equation
described in the previous section to construct the
marking evolution equations during the studied phase.
Although the speed V is constant during the phase, the
equations describing the evolution of the marking
during the phase will be defined as function in V, so
as to be applied to the algorithm that will calculate the
appropriate value of V to be applied to this phase.

),( Vtfm

And since a phase variation is signaled by a place
having its marking passing the unity value, the
minimum evolution time is obtained for every place in
the PN model by substituting:

1),( Vtfm
Then:

)(Vgt

To get the minimum of all the cases over the range of
speed provided by the source [Vmin, Vmax]:

)(min
maxmin

min Vgt
VVV

Comparing the different evolution times for the
different places of the PN model, the minimum is
chosen and the corresponding source speed V is added
to the control series.

Applying the same concept to all different phases, the
evolution of the system during a certain interval of
time could be known. The control series to be applied
to the system could also be known during this interval.

Before applying the algorithm there was a very
important step to perform which was to choose which
speed profile is to be applied to the different
transitions. This profile could affect to a certain extent
the performance of the system. In the next section we
will present a study to show the effect of changing the
speeds profile on the maximum number of phases.

5 Effect Of Speed Variation.

The effect of varying the speeds of the different
transitions on the number of phases[6] is presented in
this section. The effect of this variation will be also



directed towards the effect of reaching the desired
state in a controlled manufacturing line.

A maple tool had been developed to help in obtaining
the desired results, this tool helps in constructing the
different phases with respect to variations in the
speeds. The system used in this section is an opened
manufacturing system that is modeled by a Petri Net
as shown in Fig.2.

The importance of this study is to choose the most
appropriate speed profile to be applied to the system.
In the next example we will choose the worst case and
we will try to apply the algorithm on this case so if a
solution is found, then all the other cases by
consequence are most probably solved. The study
resulted in the conclusion that when the speed profile
U1>U2>…>Un is chosen, the maximum number of
phases is obtained. This case had been chosen to
assume the worst case when the system  passes by the
maximum number of phases before settling.
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Fig.4. presents the results obtained for the case of 3
working benches example (when n = 3). The speed
profile that gave the maximum number of phases is
then U1>U2>U3. With the obtained result we chose the
previous profile to perform the study.

All the results obtained in the previous part is with
respect to variations in the transitions speeds of all the
transitions except the source transition that we fixed in
this section which is considered in our algorithm as a
control parameter to minimize the evolution time to
reach the steady state.

6 The Phase-Control Algorithm

The phase-control algorithm is the algorithm which
helps us to construct the phase schema and at the same
time to construct the control sequence to be applied to
the system during the real evolution of the studied
system.

The inputs to the algorithm are the initial state and the
control variable to be applied to the system. The initial
state consists of the initial marking of the different
places of the Petri net model, and the speed vector
defining the speeds of the different transitions of the
Petri Net model. The control variable in our case is the
flow of pieces supplied to the system or in other words
the speed of the source.

After providing the initial state and the control
variable to the Petri Net model, the first phase could
be constructed without any problems. This is due to
the fact that the phase depends a lot on its initial state.
For each studied phase there are 2 inputs and an
output. The 2 inputs are the initial marking of the
different places of the Petri Net model for this phase
which is by its turn the final marking for the previous
phase. The Second input is the optimal evolution time
for the previous phase. The output from a phase is the
equations defining the evolution of the marking of the
places of the Petri Net model.

The second step in this algorithm is providing the
outputs of the first phase to the controller. The
controller is the module that will calculate the optimal
evolution time for the first phase and at the same time
it will calculate the corresponding source speed. This
is done as shown in the previous algorithm, where the
equations describing the evolution of the marking
during the studied phase is applied to the controller.

After that the desired state to be reached is checked if
it belongs to this phase, if it belongs the algorithm
stops and the system has reached the desired state, if
not the algorithm continues with the next step. The
equation describing the fact of choosing the best time
is as follows:

Fig. 4 Max. # Of phases variation with
respect to different speed profiles.



Fig. 5. The Phase-Control Algorithm

The Controller performs a three-dimensional
simulation to determine the place that will be
responsible for the next phase variation. There are
many reasons to have a phase variation, for example if
the marking of a place reaches the unity value or if the
marking in a place reaches its maximum capacity.
This phase is checked after that with the list of
reachable phases by the studied system and also with
the desired phase which contains the desired state.
Using these simulations the minimum evolution time
and the corresponding marking of the places are
calculated.

The output of the controller is after that applied to the
next phase. This algorithm continues until a stationary
state is reached or the desired state is reached in the
case of searching for a one.

7 Illustrative Example

The system presented in this example is an open
manufacturing line consisting of 3 working benches
each consists of a machine and an accompanying
buffer. This line is presented as in Fig. 5 :

S1 M1 S2 M2 Sn Mn

Fig. 6 Open Manufacturing Line with 3 working
benches

This open manufacturing line is modeled by the Petri
net model of Fig. 7, where a buffer is modeled by a
continuous place and a machine is modeled by a
continuous transition. The speed range that could be
provided by the source is [0,10].

T2T1P1 P2 YV Pn Tn

Fig. 7 Corresponding Petri Net model

The equations that describes the marking evolution in
the different places of the Petri Net model:

))(,min())(,min()(

))(,min())(,min()(

))(,min()(

tmUtmUtm

tmUtmUtm

tmUVtm

33223

22112

311

11

11

1

&

&

&

And

))(,min()( tmUtY 33 1&

The speed vector is defined by 234U

The initial marking vector is defined by 
0

0

0

0M

And 00Y .

Mnopt

tnopt, M(tnopt)

M(tn, V)

t2opt, M(t2opt)

M(t2, V)

t1opt, M(t1opt)

M(t1, V)

M1opt

Phase 1

Controller

M(0), U, V

Md

tiopt, M(tiopt)

M(ti, V)

Simulator

Minimize

Md  M(ti, V)

No

Yes

Desired
Phase

List of Reachable Phases

Phase 2
M2opt

Phase 3

Phase n+1

Controller

Controller

Controller



And since we work with limited capacity buffers, then
the vector presenting the maximum capacity of the
corresponding places is given by Ca = (10, 3, 2.3)

Using the defined initial values, the equations that
defines the marking evolution in the different places
of the Petri net could be given by:
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Then the equations describing the marking in the
different places of the PN model during the first phase
could be given by:
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Then the marking in the different places could be
simulated with respect to the velocity of the source V
and the time t. As an example the simulation of the
marking in the first place and the output place is in
Fig.8 and Fig. 9.

Fig. 8 The marking M1(t)

Fig. 9 The marking Y(t)

Fig.8 and Fig.9 show the marking in the first place and
in the output place during the first phase. It could be
observed from the simulations that the marking in the
different places during a certain phase depend on the
source velocity V. The algorithm used for the
simulation is then the algorithm defined in section 5.
So if the evolution time is to be minimized during a
certain phase then the velocity V chosen during that
phase must be appropriately chosen. The curve shown
in Fig.10 for example shows the marking evolution in
the first place with respect to a wide range of chosen
velocities for the source. To observe a phase variation
the marking must pass the unity value so focusing
more on the relation between the velocity and the
marking the following curve is obtained:

Fig. 10 Variation of M with respect to V

Fig.10 is the projection of the curve drawn in Fig.8 on
the M,V plane. Estimating the results from this curve
only could lead to a false result. This is because the
result obtained from a very fast glance to this curve is
that the most appropriate speed would be V = 4 but
this is not the case when taking into consideration the
following curve also:



Fig. 11 Relation between V and t

Fig.11 shows that the time depends inversely on the
speed V during the first phase.

This conclusion will lead to choosing the source speed
to be the maximum possible speed allowed by the
source Vmax.

The overall curve describing the relation between the
marking in the different places and the evolution time
is as follows:

Fig. 12 Evolution without applying the algorithm

Fig. 13 Evolution with applying the algorithm

The results presented in the previous curves shows the
effect of applying the algorithm to the overall
performance of the system. The first remark is
obtained by comparing the level of pieces in the first
stock with the original one. The level or number of

pieces ranges to a certain limit between 2 boundaries
while in the original case the number of pieces could
reach infinity. In the original case we need to use an
infinite capacity buffer or the source of pieces
supplying the system must be stopped which is not
logical. But in our case the number of pieces is limited
which is considered as a great advantage. The second
remark is the throughput of the system which could be
seen higher than the original case without applying the
algorithm and which could be better also by adjusting
the initial conditions and the maximum and minimum
allowable speed for the source.

The algorithm presented in section 4 calculates the
velocity that will minimize the evolution time. At the
same time this algorithm will determine the place that
will be responsible for reaching the second phase and
in this example it is the first place. The algorithm
continues to calculate the different places that will
make the system reaches the next phase, the evolution
time is calculated at the same time.

Fig. 14 The Control Series

After applying this algorithm to construct all the
phases the control series could be constructed as
shown in the previous curve. This series is in fact the
different values for the source speed to be used during
the manufacturing process.

We conclude from the results obtained from the
previous example that using the modeling procedure
presented in this paper gives a helpful way to
minimize the evolution time and at the same time the
algorithm used to minimize the evolution time is a
good algorithm for open manufacturing systems. The
tools developed and presented in this paper helps at
the same time to predict if the desired state is
reachable using the provided initial state, and this
could help after that to define an initial state that will
make the desired state reachable.
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7 Conclusion

This paper present a method developed for modeling
manufacturing systems, this method is based on a new
concept of cutting the evolution of the system on
different phases. Each phase is characterized by
different dynamics. But at the same time this method
saves the continuity of the system and it also saves the
dynamics of the system during a certain phase and this
could be recognized in the equations describing the
marking of the different places of the PN model.

The study performed on the system for studying the
effect of changing the speed profile on the
performance of the system led to the importance of
choosing an appropriate speed profile.

The performed study calculates the minimum
evolution time with respect to each phase and the
corresponding source speed. These speeds that were
calculated during the simulation phase could be
applied to the real system during the manufacturing
process.

The developed algorithm not only tries to choose the
appropriate speeds to minimize the time, but it also
maximizes the throughput of the system. This is also
important to guarantee the performance of the system
while applying the algorithm during the simulation
phase or while applying the control series during the
manufacturing phase.

Using the same concept, the minimum time for
reaching a desired state could be calculated. This
could be considered as a step towards the control
algorithm.

The developed algorithm was applied to
manufacturing lines having infinite capacity buffers,
as well as to manufacturing line having finite capacity
buffers.

 Our future work concerns also performing a study on
comparing the performance of using the approximated
continuous model and the initial discrete model.
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