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Abstract:-The paper deals with large-scale systems represented as a collection of subsystems which respect a
certain order and interconnection relays. Each subsystem is described through a specific model so that the
whole system can be view as a multi-model homogenous structure. The management of a system is enough
complicated and in order to accomplish it we propose a decentralised decision structure having a well-defined
distribution of supervisory functions. For a large scale system two strategies are outlined:; relaxation and
partitioning appropriate for the weak coupling systems and decomposition technique suitable for additive
separable systems. The work suggests an optimal system's functionality through a partial optimisation of each
subsystem's quality criteria.
         The numerical implementation of associated algorithms was improved through a parallel and hierarchical
distributed computation approach. The developed software package (LSOPT) reduces the computation
complexity, allowing an equilibrate calculus effort per each subsystem. Although algorithms' design enables an
efficient functionality on a parallel unit net, the actual results are obtained applying a sequential procedure in a
former phase. The main contribution consists in a distributed computation approach on multi-model
representation.
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1 Introduction
In many applications, the change of the original

optimisation problem (OP) described by the linear
or non  linear criteria function, with or without
restrictions, into an equivalent problem (or sets of
equivalent subproblems) having a standard plot is
necessary. The basic idea is that the solution of the
latter, obtained by using the numerical methods of
mathematical programming (MP), leads to the
solution of the original problem. These
transformations are useful in the optimisation stage
of a real process also because the solution of
equivalent problems needs a well-distributed
computation effort. To make the computation
easier, specific methods were developed to solve
that problem [1], [2], [3], [4]

Several techniques may be used to simplify
numerical computations used to solve large-scale
optimisation problems, such as: decomposition,
penalisation, relaxation, partitioning.

Decomposition results in a set of subproblems
able to be solved in parallel attached to a global
problem additive separable in criteria and
constraints.

Penalisation changes an original problem with
restrictions into a problem free of restrictions
having the same solution as the original one

As usual, the relaxation and partitioning
techniques are intimately correlated in the
algorithms applied to obtain the appropriate
solution for block diagonal problems associated to
weak coupled systems.

Partitioning is applied when many variables are
present. This is a procedure, which divides the
variables of the problem in two subsets. At first it
acts on the variables belonging to one of the subsets
and afterwards on variables in the other one.

Relaxation consists in the temporary
elimination of some restrictions and in solving the
problem with the remaining ones. If the solution
complies with relaxed restrictions, then the solution
is optimal one. If not, one or several restrictions are
imposed and the procedure is reiterated.

In order to solve large-scale optimisation
problems a software package (LSOPT) which
automatically defines and determines the
optimisation problem is proposed. Options for
developing the control model, which by means of
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the optimisation procedure leads to the solution, are
available to the user.

The paper is organized as follows: First, a
decomposition approach is described in Section 2
follows by the relaxation and partitioning
techniques detailed in Section 3. Then, an
overview presentation of a software package
together with a numerical computation examples
are introduced in Section 4. Finally, Section 5
traces some conclusions and future trends.

2 Decomposition approach
An overview representation of a system

suitable to a decomposition approach is depicted in
Fig.1, where:
u:=[u1|u2|...|uN] is a set of input technological flow
vectors

Fig.1 An overview structure of a multi-model system

m:=[m1|m2|...|mN] is a set of control system vectors
x:=[x1|x2|...|xN] is a set of input coupling vectors
z:=[z1|z2|...|zN] is a set of output coupling vectors
y:=[y1|y2|...|yN] is a set of qualitative criteria values
It is assumed the original problem is additive
separable respect to criteria and constraints,
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where µi, ρi stand for Lagrange operators
The Lagrangian is additive decomposable and the
global problem is translated in N optimisation

subproblems as: max
( , )

( , )
x m

i i i

i i
f x m  keeping the same

previous constraints.
Further, it was assumed that the card(µi) is

considerable smaller then card(ρi) and a software
module was designed to implement the algorithm
based on ρ operators. The computation was
distributed at two levels according to the following
algorithm:
Step 1 The ρi vectors are estimated at higher
hierarchical level through the minimisation of L(ρi)
using a gradient method or the strategy Newton-
Raphson,
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Step 2 Once the vectors ρi calculated we can
minimise the optimisation problem at local (lower)
level,
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Step 3 A convergence criteria is verified and the
optimisation procedure stops when the inequality
becomes true.
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3 Relaxation and partitioning
This section is concerned with block diagonal

structure problems classified into linear and non
linear sets, associated with some weak coupling
systems. In the following it is presented in details
the algorithms implemented in the developed
software using to solve the two types of the
previously mentioned problems.

3.1 Algorithm for linear problems (Ritter)
It is used for general program of the type:

• linear problems: min( )
,x y

T Tc x c y+ 0

with the coupling constraints:
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Ax+D0y=b0

Bx+Dy=b
where:
x:=[x1|x2|...|xN ] is a set of ni-dimensional vectors xi

and y is the coupling vector of the subsystems,
0,,...,1,0 ≥=≥ yNixi

c:=[c1|c2|...|cN] is a set of corresponding coefficients
A:=[A1|A2|...|AN] is a set of (m0 x ni ) dimensional
matrices Ai
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 is a block

diagonal matrice having Bi: (mi x ni) array,
D:=[D1|D2|...|DN],  Di: (mi  x n0) array,
b:=[b1|b2|...|bN ],  bi vectors

For the general case, the solution is given
by Ritter’s partitioning method and for the
particular case, y = 0, by Rosen’s linear method.
Let’s assume rank Bi = mi and therefore the non
singular array Bi1 exists for some initially given
coupling vector y0, so that:
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Using partitioning the restrictions may be written as
follows: ),...,1(2211 NibyDxBxB iiiiii ==++
By solving for xi1 the above equations, we get:
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variables xi1 are eliminated first. In order to
simplify the computation we adopt the following
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Thus we have obtained a number of equality
restrictions equal to the number of coupling

restrictions in the original problem. If ( ), 0
0
2 yxi  is

the solution of the reduced problem, the new values
for xi1 are obtained as follows:
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Therefore, the global solution ( ),, 0
0
2

0
1 yxx ii  solves

the primal problem changed by the relaxation of
01 ≥ix  conditions. When these relationships are

met, the vector ),,( 0
0
2

0
1 yxx ii  is the appropriate

solution of the problem.

3.2 Algorithm for non linear problems
      (Benders)
It is used for the following program type:

 ••non linear problems: min( ( ))
,x y

Tc x f y+

with the coupling constraints:
Ax+F(y)≥ b
x≥0,                    where:

x:=[x1|x2|...|xN ], is a set of ni-dimensional vectors xi

and y is the coupling vector of the subsystems,
0,,...,1,0 ≥=≥ yNixi

c:=[c1|c2|...|cN] is a set of corresponding coefficients
A:=[A1|A2|...|AN] is a set of (m0 x ni ) dimensional
matrices Ai

f: scalar non linear function of y;
F ∈ Rm whose components are functions of y;
S: admissible subset in Ep selected according to the
functional constraints
It may be observed that for a given value of y the
problem is linear with respect to x.
Let’s consider the set:

}),(..0|{ SyyFbAxiaxyR ∈−≥≥∃= , where
vectors y is admissible. The set R is determined by
means of Farkas lemma, namely:
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occurring in the cone: }0,0|{ ≥≤= uuAuC T .
The problem is rewritten as:
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For some given y in R, the minimisation between
parentheses is a linear program with respect to x:
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The dual admissibility set is:

)0|))(max()(min( ≤−+ uAuyFbyf TT

If the extreme points of P, noted N
iu , i=1,…,nN, are

considered, the problem can be written:
)))(max()(min( N

i
T uyFbyf −+ .

Finally, the problem is equivalent to:
min z,  RyuyFbyfz N

i
T ∈−+≥ ;))(()( .

Finding the solution of the latter problem is
a very difficult task because for each extreme point
a restriction arises and so a large number of
constraints occurs even in middle scale problems.
However, to get an optimal solution, only a few
constraints are considered to be active. Therefore,
the relaxation strategy is used. First a small number
of restrictions is considered and the problem is
partially solved. If the solution complies with the
restrictions taking into account, it is an optimal one.
If not, a restriction not complied with is added and
the solving procedure is reiterated.

It can be shown that, if (z0, y0) is the
solution of the problem above, and x0 is the solution
of the linear program, min(cTx) having the
restrictions Ax 0);( 0 ≥−≥ xyFb , then the pair (x0,
y0) solves the original problem and

)( 000 yfxcz T += .
The partitioning procedure goes on till a bellow
optimality test is completed.

))(;0;|))(((max 000 yfzuucAuuyfb T

u
−=≥≤−

4  Experimental results using the
developed software package

The interface of the designed software package
(LSOPT) is flexible and allows data to be easily
taking over. The programs are developed in such
way as to enable algorithms to be traced step by
step. The nucleus algorithms are implemented in
dynamically linked libraries to allow them to be
called from various modules (e.g. SIMPLEX and
BOXE algorithms) and to have more rigorous
control of applications. Algorithm implementation
in dynamically linked libraries has also the
advantage of a better management of computer
resources (e.g. stacks operation management in
order to enable any kind of function to be taking
over). The algorithms in the library are puts into
places and for each class there are matters for
algorithms control, initialization and erasing from
computer storage. Since, objected oriented
techniques are used new algorithms may be
developed on the basis of these ones. The codes are
written in C++ language.

In the following we illustrate some simple
understanding numerical examples carried out by
dedicated computation libraries.
•A decomposition procedure using the Lagrange
operators.
  Let’s assume the following criteria functions:
f1(x1,m1)=2x1

2+m1
2-20x1-40m1+4x1m1+100

f2(x2,,m2)=x2
2+6m2

2-30x2-60m2+4x2m2+225
the corresponding model and coupling constraints,
x1=z2; x2=z1; z1=x1+2m1; z2=m2

associated to the system depicted in Fig.2

Fig.2 A simple structure of a two interconnected sub
system

Consequently, the global optimisation problem is:
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constraints mentioned above. According to
Lagrange operators optimisation procedure it can
be reformulate as:
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where ρi it is assumed constant.
At higher hierarchical level a gradient algorithm
gives us the operators’ values at each step
according to:
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 and the advanced

step α keeps the value of 0.05 for all iterations. The
task is over when the inequality
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.  becomes true and the

operators' values passed to the lower computation
level are ρ1

* =-4.00, ρ2
* = 6.00. Here the BOXE

method was implemented to solve the local
minimisation problem. Thus we obtain x1

*=1.00,
m1

*=5.10, x2
*=11.00, m2

*=1.00
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• Example of Ritter linear algorithm computation:
Let’s consider the problem:

6521 2)(min xxxxxF −−−−=
and the corresponding linear system:

where 0≥ix , i=1:11

The solutions are:

32;10;4

;0;8;6

65

1110843271

−===

========

zxx

xxxxxxxx

More specific, the implementation consists in
taking over input data and in defining the
minimisation criteria, the number of coupling
restrictions, the number of subsystems together
with the estimated variables and the corresponding

restrictions for each one. The output data visualised
in dedicated windows consist in:

-subsystems (Ai, Bi, ci
T, bi, xi, where i –

subsystem’s number) resulting from large scale
system partitioning;

 -subsystems (Ai1, Bi1, ci1
T, xi1, Ai2, Bi2, ci2

T, xi2)
resulting from a new partitioning of previously
partitioned subsystems;

 -angular systems obtained and the pivot
selected for each step;

 -final solution.
 • Example of Benders algorithm computation:
Let’s consider the problem: ∑ ∑+

i ji
ijijii xcyf

,

min
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The Table 1 shows the behaviour algorithm

Y0 ∑ ∑+
ji i

iiijij yfxc
,

)(≥z +(   ) 1y +(   ) 2y + (   ) 3y +(   ) 4y Z0

0 1 0 0 33 26 -  5 7 -9 -1 11
1 0 1 1 27 6 7 -11 7 7 13
0 0 1 0 41 34 -17 -9 7 -3 12
1 1 1 1 16 0 7 -5 7 7 16
1 1 1 1 16

Table 1. Example of Bender’s behaviour algorithm

The associated module receives the criteria and
the restriction system selecting the start vector y.
The dual program is solved using the SIMPLEX
algorithm, which leads to the solutions. The
equivalent problem built up on the previous data is
solved and the solutions are tested. The algorithm is
reiterated in the case of a non accomplishment of
all imposed restrictions.

5  Conclusions
The management of a large scale system is

still considered a complex task and an open
problem for the future researches. we have
presented some partial results achieved in the
design of a software dedicated package. The
proposed algorithms may be integrated in a
decision control strategy class of large scale
industrial or economical systems. Some recent
attempts in applying the software tools with a
satisfactory evaluation concern with a reduced

manufacturing cost of cement while increasing its
performance and the optimisation of the schedule
of roadwork by taking into account some traffic
characteristics.
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