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Abstract: Technology of clothing production is still based on quality of sewing process and sewing threads. The
properties of sewing threads are important for realization of seams on sewing machines and for durability of this type of
joints. For modern automatic sewing machines the threads breakage represents crucial problem. Quality of sewing
threads for these machines is therefore dependent on their intensity of breakage at the specified sewing conditions
(sewing ability). There are a lot of  variables describing the failure of threads at sewing process e.g.:
- number of thread breaks per some length of thread NT

- number of thread breaks per some time interval NI

- time between two successive thread breaks T
In this contribution the basic methods of sewing ability evaluation are briefly described. The main part is

devoted to modeling and analysis of experimentally determined values Ti, i = 1,...N for typical sewing threads. The
system of exploratory data analysis based on the concept of quantile estimation is proposed. For selection of the
suitable distribution of T the combination of nonparametric density and Quantile-Quantile graphs are used. For
evaluated sewing yarns the Gumbell distribution is chosen as optimal. The parameter estimates of Gumbell distribution
is computed from the quantile regression by using of least squares criterion and from selected quantiles. For
characterization of sewing ability the median value computed from parameter estimates is proposed. The program
package ADSTAT for realization of the above mentioned techniques is briefly described.

For modeling of survival of sewing threads the model of rope composed from m strands are adopted. It is
assumed that at each moment the force applied to the rope is divided equally among the unbroken strand. For such a set
of strands broken practically at the same moment we actually do not know the precise level of the strength causing the
break of some of them, and we are not able to register the order in which they broke. Thus a part of data is interval-
censored. Fortunately, if we observe a sufficient number of breaks, we register also a sufficiently large set of
uncensored data. For estimation of cumulative hazard function the Nelson-Aalen estimator is useful. We were analyzed
the asymptotic properties of this estimator. The min result is that the number of observed unbroken strand is of order n.
The uniform consistency and asymptotic normality has been proved as well. This approach are  used for Monte Carlo
study simulating breaks of sewing thread composed from 10 filaments (strands) having survival distribution with
constant hazard rates (exponential survival distribution).
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1.   Introduction
Technology of clothing production is still based on
quality of process and sewing threads. The properties
of sewing threads are important for realization of seams
on sewing machines and for durability of this type  of
joints.

For modern automatic sewing machines the
threads breakage represents crucial problem. Quality of
sewing threads for these machines is therefore
dependent on their intensity of breakage at the specified
sewing conditions (sewing ability).

There are a lot of variables describing the
failure processes at sewing process e.g.:

 - number of thread breaks per some length of thread
NT

 - number of thread breaks per some time interval NI

 - time between two successive thread breaks T

In this contribution the basic methods of sewing ability
evaluation are briefly described.

The main part is devoted to modeling and
analysis of experimentally determined values Ti, i =
1,...N for typical sewing threads. The system of
exploratory data analysis based on the concept of
quantile estimation is proposed. The program package
ADSTAT for realization of the above mentioned
techniques is briefly described.

2.   Sewing Ability Evaluation
Methods for sewing ability evaluation differ in
parameters describing this characteristics, conditions of
measurements and techniques of data treatment.
 Three typical representatives of sewing ability
evaluation are summarized in this section.
A. Wiezlak [1] has defined sewing ability as a mean
length of sewing (seam) without break. Measurements
are realized on Textima 8332 sewing machine at rate
3960±60 rpm. and defined brake. For sewing the two
layers of cotton fabric are used. Minimum number of
measurements is twenty. For treatment of results the
Gumbell type distribution is assumed.
B. Nestler  [2] has defined sewing ability as a number
of thread breaks per 100 m of seam. Measurements are
realized on Textima 8332 sewing machine at 5000±100
rpm at defined brake. For sewing the three layers of
cotton fabric (260-300 gm-2) are used. Sewing process
has got defined pauses for cooling of sewing needle.
For treatment of results the Poisson type distribution is
assumed. The mean number of thread breaks per 100 m
of seam is compared with standard one.
C. Nemeth [3] has defined sewing ability as a mean
length of sewing (seam) up to defined number of
thread breaks. Measurements are realized on Textima
8332 sewing machine. The rate of sewing and sewing

material are not specified. Some sewing techniques are
defined. At simple sewing the number of breaks per
100 m is evaluated. At sewing with defined pause after
some seam length the number of breaks per 100 m is
evaluated. At sewing of button holes the number of
short seams without break is evaluated. For treatment
of results the exponential distribution is assumed.

Our test of sewing ability evaluation is described in the
experimental part.

3.     Exploratory Data Analysis
From statistical point of view leads the analysis of
sewing ability tests results to the identification of
probability model and estimation of corresponding
parameters. Due to well known fact that yarn breakage
distribution is positively skewed the classical analysis
based on the normality assumption cannot be used.
Sewing threads are strongly non-homogeneous and
sewing process is influenced by many random events.
The results of sewing ability tests are therefore often
corrupted by the outliers (dirty data). Techniques that
allow to isolate certain basic statistical features and
patterns of data are therefore necessary.

Special distribution free robust methods of this
type are collected under the name exploratory data
analysis (EDA) According to Tukey [8] the EDA is a
"detective work". It uses as tools various descriptive
and graphically oriented techniques which are free of
strict statistical assumptions. These techniques are
based on the assumptions of the continuity and
differentiability of underlying density only.
In this contribution the set of selected computationally
assisted EDA methods suitable for analysis of sewing
ability test results are discussed. The computationally
assisted exploratory data analysis system is described
in the book [2].
The special variants of the quantile plot are proposed
for graphical visualization of data and evaluation of
dirty data. The construction of sample distribution i.e.
the estimation of probability density function will be
carried out by the kernel estimation of probability
density function and by the quantile-quantile plot.
For practical realization of these techniques the
ADSTAT package is useful.

3.1   Some Basic Concepts
The EDA techniques for small and moderate samples
are based on so called order statistics

x(1) < x(2) < ... < x(N)

which are the sample values (assumed to be distinct)
arranged the in increasing order.

Let Fe(x) is the distribution function from
which values xi have been sampled. It is well known
that the transformed random variable
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)x(Fz )i(e)i( = (1)

has independently on distribution function Fe the Beta
distribution Be [i, N-i+1]. Its mean value is given by
relation

1N

i
)z(E )i( +

= (2)

where E(.) is operator of mathematical expectations.
The elements Vij of covariance matrix V for all pairs z(i)

, z(j) i, j=1,...N are simple functions of i,j and N only.
Using back transformations of E[z(i)] the relation

)P(Q)z(F)x(E ie)i(
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is obtained.
In  (3) the Qe(Pi) denotes quantile function and

1N

i
Pi +

=

is cumulative probability.
Description of quantile function properties and

its advantages for constructing of empirical sample
distribution contains paper of Parzen [11].

From  (3) is obvious that the order statistic x(i)

is raw estimate of the quantile function Qe(Pi) in
position of Pi. For estimation of quantile xP� Qe(P) at
value i/(n+1) < P <(i+1)/(n+1) the piecewise linear
interpolation
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can be used. Variance D(xP) can be computed from
equation

)x(f N

)P1(P
)x(D

P
2P

−
= (5)

Symbol fe(xP) means the probability density function
corresponding to distribution function Fe.

The interpolation (4) can be used for estimation
of sample quantiles xPi or x1-Pi for Pi=2-i i=1,...n. These
quantiles are called letter values [23].All letter values
except for i=1 (median) are in pairs. For example we
can estimate lower quartile x0.25 (Pi=0.25) and upper
quartile x0.75 (Pi=0.75) etc.

For EDA purposes the modified definition of
cumulative probability

25.0N

375.0i
Pi +

−
= (6)

proposed by Blom is often used. Some proposals for
definitions of Pi are presented in paper [12].

3.2   Data Visualization
For graphical visualization of data many simple
techniques as stem-leaf plot, box plot, dot plot [1] and
dig-dot plot [13] have been proposed. Only the simple
quantile plot (QP) and his variant is here described.

Symmetry and tail length can be characterized
by using of g - h distribution system (see [4]).

Empirical (sample) quantile plot Q(P) is constructed as
dependence of x(i) on Pi. From patterns of points some
statistical features of data as a symmetry, local
concentration and rough normality can be simply
recovered. Detailed interpretation of QP is described in
the book [8].

For better interpretation the quantile functions
of normal distribution

PN u )P(Q σ+µ= (7)

are superimposed to QP. In  (7) the up are quantiles of
standard normal distribution N(0, 1). Parameters µ  and
ó  are estimators of location and scale.
Two various normal quantile functions are graphed.
The first one is based on the moment estimators i.e.
sample mean xM and sample standard deviation s. The
second one uses robust quantile estimators median x0.5

and quartile based standard deviation

349.1

xx
s 25.075.0

M

−
=

This variant of QP enables to compare deviation of
sample values from assumed normal distribution. For
data from sewing ability tests can be normal quantile
function replaced by assumed distribution. For frequent
exponential distribution is quantile function in the form

)P1ln( BA)P(EX −+= (8)

The parameters of threshold A and scale B can be
estimated as A �  x(1) and B �  xM - x(1). Quantile
functions foe other types of positively skewed
distributions are summarized in book [4]. QP graphs
with superimposed theoretical quantile function enables
to identify the outliers (dirty data) as well.
For complex visualization of data the quantile box plot
(QBP) proposed by Parzen [5] is useful.

3.3   Building of Sample Distribution
As an estimator of the empirical probability density
function histogram with variable bins is often
constructed. Smooth kernel type density estimator is
natural generalization of histogram.

Histogram is piecewise constant estimator of
sample probability density. Histogram height in j-th
class bounded by values (tj-1, tj) is calculated from the
relationship

j

j1jN
H h N

)t,t(C
)x(f −= (9)

where the function CN(a, b) denotes the number of
sample elements within interval <a, b> and

1jjj tth −−=
is the length of the j-th interval. Now, the problem
encountered is the choice of boundary values {tj}
j=1,...M, the number of class intervals M and their
lengths hj with respect to the histogram quality. In our
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ADSTAT programs the simple data based two-stage
technique is used.

In the first stage the number of class intervals

]1)-(N 46.2int[M 0.4= (10)

is computed Here int[x] is integer part of number x.
In the second stage the individual lengths hj are

determined. The estimation of hj is based on the
requirement of equal probability in all classes. For this
purpose the empirical quantile function Q(P) based on
the order statistics x(i) is used.
In practice the P-axis is divided into identical intervals
having the size of 1/M. For these intervals the
corresponding quantile estimates tj = x(j/M) are
constructed by using of  (4) where P = j/M. Practical
experiences have hitherto proven that this construction
be suitable even for strongly skewed sample
distributions.

The kernel type nonparametric estimator of
sample probability density f(x) can be constructed on
the basis of Lejenne-Dodge-Kaelin procedure [11]. The
final estimator has the form

∑
=
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Selection of kernel function K[x] and computation of
bandwidths hi is described in [4].

3.4   Selection of Sample Distribution
The main goal is to approximate the empirical sample
distribution by suitable theoretical one. The comparison
of these distributions the variants of Q - Q plot are
suitable.

Classical Q - Q plot is based on comparison of
empirical quantile function Q(Pi) �  x(i) with chosen
theoretical quantile function QT (Pi). For theoretical
distribution functions of type FT((x-T)/S) is attractive
to use standardized quantile function QTS(Pi) (see[4]).
When empirical and theoretical distributions are in
coincidence, the relationship

)P(Q STx iTS)i( += (12)

is valid. Here usually T is the location parameter and S
is the parameter of scale. For some three parameter
distribution the shape factor is usually a parameter of
the plot. Our programs (ADSTAT) select such shape
factor value that straighten the individual points best.

Due to strong dependence among order
statistics and their nonconstant variance the Q - Q plot
gives a very patterned appearance and the degree of
linearity is often hard to quantify.
In the work of Michael [18] the stabilized probability
plot is introduced. Kafander and Spiegelman [13]
propose the conditional Q - Q plot. For EDA purposes
we use the empirical probability plot (EPP) (see also
[9]).

3.5     Power Transformation of Data
Power transformation is in context of the EDA

used as a tool for simplifying of data distribution.
Suitable power-law transformations may  result in a
distribution  that is nearly symmetrical and perhaps
more nearly normal. This is obviously not useful for
data from sewing ability tests but in some specific
cases (e.g. distribution of multifilament sewing threads
failure) the normality assumption can be adopted as
well.

Power transformation enables to select of
suitable location estimators for skewed distribution and
construction of corresponding asymmetrical confidence
bands. For these reasons is included to this section.

In many cases the using of simple power
transformation

0<for       x=g(x)=y

0=for    ln(x)=g(x)=y

0>for       x)x(gy

- λ

λ
λ==

λ

λ

(13)

leads to the improving of the data distribution.
This transformation is not scale invariant and is not
continuous function of lambda. It requires the positive
data only. Optimal transformation can be selected by
minimizing of some robust measures of skewness
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As a diagnostic tool the selection graph can be simply
constructed. This graph is based on the requirement of
symmetry of quantiles about  the median.
This requirement can be mathematically described by
relationship [21]
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Letter values, where Pi = 2-i for i = 2, 3, 4,...are usually
chosen. Selection graph has on y-axis the quantities
xPi/x0.5 and on x-axis the quantities x0.5/x1-Pi. For
comparison of computed points with ideal courses for
constant  lambda the solution of equation

2xy =+ λ−λ

is superimposed to graph.
Another exploratory technique for graphical

estimation of optimal power is described by Emerson
and Stoto [22].After selection of optimal power the
location parameter can be estimated from relation
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Corresponding confidence interval is described in [4].
The Box-Cox power transformation family,

which is continuous function of power lambda can be
defined by equation

0=for        ln(x)=g(x)=y
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This transformation is limited for positive data only.
After slight modification the range of applicability can
be arbitrarily extended.

Properties of this transformation family are
studied in the book [23]. Based on the assumption that
for some power lambda the y variable is normally
distributed N(µ y, ó y

2) the likelihood function can be
constructed. Logarithm of likelihood function has the
form

)xln()1()ln(s (N/2)=)L( ln
N

1i
i

2
y ∑

=

−λ+λ

The sy
2 is sample variance of transformed data.

The likelihood function can be plotted against
lambda in suitable range (standard range is from-3 to
3).To this plot the 100(1-Æ)%th confidence interval of
power

[ ] )1()(Lln()(Lln(2 2* χ<λ−λ (17)

The maximum likelihood estimator of power is here
indicated by star.

From the width of confidence interval the
quality of power transformation can be indicated.

3.6   Program Systém ADSTAT
System ADSTAT contains 8 independent modules of
statistical methods for univariate and multivariate data
[4]. The manipulation with ADSTAT is very simple by
using of pull down menu and panes. Individual program
modules are built windows like environment. This
environment includes the powerful block oriented data
editor, context sensitive help and unified graphical
presentation. Exploratory methods included in module
"Basic Statistics" can be divided to three main parts.
A. Techniques for presentation of data.
B. Construction of empirical sample distribution and
comparison with 12 theoretical ones.

C. Power transformation of data
The above mentioned and more complex EDA

techniques described in [4] are used. By this program
the computations in this contribution were realized.

4.   Experimental Part On the base of above
mentioned methods the modified sewing ability test has
been proposed. Sewing ability is characterized by time
between two successive thread breaks T during sewing
at defined conditions. Measurements were realized on
Minerva 72112-105Q sewing machine with Quick-stop
digital motor. The rate of sewing was 4500 rpm.
Braking was adjusted to good appearance of seam. For
sewing the one layer of cotton fabric (160 gm-2) was
used.

 For evaluation of sewing ability the following
sewing threads were selected:
n core yarn of PES/cotton 70/30 sample No 44
n PES staple yarn sample No 31
n PES staple yarn sample No 35
Properties of sewing threads are given in table 1.
Table 1  Properties of sewing threads

Yarn P Tt CV EL

No N/tex tex % GPa
31 0.319 29.84 8.80 3.95
35 0.287 32.00 15.00 5.44
44 `0.423 38.20 6.25 5.81

Here P is strength, Tt is fineness, CV is unevenness and
EL is loss modulus.

The measurements of P and F were realized by
standard methods.

Unevenness was characterized by the so-called
quadratic unevenness CV measured on the Uster
device.

Acoustical loss modulus EL was measured on
Rheovibron device at 110 Hz and temperature 20 oC.

For each thread the 30 values of times between
two successive breaks Ti [s] were evaluated.

The statistical analysis of experimentally
determined Ti, i = 1,...N was used for creation of
nonparametric probability density function and
selection of the suitable parametric one (see.
chap.3).The sewing ability is characterized by the
median value Me of time between successive threads
breaks during sewing experiment.

5.   Results and discussion
 Statistical analysis of sample values Ti, i = 1,...N)
consists from three parts:
- nonparametric density creation
 - selection of suitable theoretical one
 - parameter estimation for selected distribution
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The main aim is creation of suitable probability
model, evaluation of its parameters and selection of
characteristics for expressing the sewing ability.

5.1     Nonparametric density estimation
It is well known, that for full description of random
variables the corresponding probability density function
is required.

From values Ti, i = 1,...N of times between two
successive breaks the sample density estimator was
constructed. For creation of density trace the kernel
type nonparametric estimator has been used.. Typical
kernel type estimator (dotted line) is compared with
density of normal distribution (solid line) on the fig 1.

Density trace

.......  kernel
____  normal

From these kernel type nonparametric
estimator is evident, that the distribution of times
between two successive breaks is skewed to the right
and the form of density under modal value is not too
sharp. This shape of sample density trace has been
obtained for other sewing threads as well.

5.2   Selection of theoretical distribution
Time to failure or times between two successive breaks
T are often modeled by exponential distribution.
Nonparametric densities created from experimental
data indicated that the exponential one is not acceptable
for description of this random variable. Due to lack of
theoretical explanation of behavior of T variable the
data based approach has been used.

The graphical tools for selection of theoretical
distribution well approximating the sample one are the
Q-Q graphs (see chap. 3]). Empirical quantiles Qe(Pi)
are approximated by the sample order statistics T(i).
For known theoretical distribution the quantile function
QT is simply the inverse function to cumulative density
function.
Let the theoretical distribution is e.g. Gumbell one

))zexp(exp(FT −−= (18)

where z = (T-A)/B, A is the modal value and B is the
scale parameter. The corresponding quantile function
has the form

))Pln(ln( BA)P(Q iiT −+= (19)

If the sample distribution can be approximated
by the Gumbell one the dependence of the T(i) on
 -ln[-ln(Pi)] called Q-Q plot has to be linear. By the
same way the Q-Q plots for other types of theoretical
distributions can be created. For all tested threads the
Q-Q graphs for normal, log-normal,, rectangular
exponential, Weibull, gamma, Pareto and Gumbell
distribution were compared. The Gumbell Q-Q graph
were in most cases the best ones. Typical Q-Q graph
for Gumbell distribution is shown on the Fig 2.

Q -Q graph

 .  sam ple
da ta

5.3     Parameter estimation
Above described techniques lead to important
conclusion that the Gumbell distribution can be used
for modeling of times between two successive breaks T
distribution. Probability density function of this
distribution has the form

z)}/Bexp{-exp(- )zexp()T(f −=
where z =(x-A)/B.

The location characteristic are defined by
relations:
- mean value E(T)

E(T) = A + B ∗ 0.57722 (20)
 -modal value Mo(T)

Mo(T) = A (21)
 -median value Me

Me = A + B ∗ 0.36651 (22)
The variance D(T) is equal to

D(T) = 1.64493 ∗ B (23)
and variation coefficient is defined by equation

v(T) =  D(T)/E(T) =
= 1.28255/(0.57722 + A/B) (24)
These characteristics can be computed for

known values of parameters A and B.
For estimation of parameters A,B the

minimization of the least squares criterion

Fig. 1 Density traces for sample No 31
Fig. 2 Q-Q graph for sample No 31
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can be used. For the Gumbell distribution the
minimization leads to the two nonlinear equations
containing unknown parameter estimates A*, B*. The
parameter estimates A*, B* and values E(T), Me and
v(T) are for investigated threads summarized in the
table 2.
Table 2.  Parameters of Gumbell distribution

No A* B* E(T) Me v(T)
31 76.6 144 169 129 1.16
35 174 227 306 258 0.95
44 44 66 82 68 0.95

For small samples the estimates A*, B* are very
rough. These estimates are sensitive to presence of
outlying Ti values as well. The quick and robust
estimates A+ and B+ can be obtained from selected
quantiles T(s) and T(r)

A+ = [a T(s) - b T(r)]/(a - b) (26)

B+ = [ T(s)- T(r)]/(a - b) (27)
where a = ln (ln (1/q1)) and b = ln ( ln(1/q2)).
Parameters s/N an r/N are equal or just greater than q1

and q2 respectively and r < s. For estimation of A+ the
optimal are:

q1 = 0.1789
q2 = 0.6022.

 For estimation of B+ the optimal are:
q1 = 0.0263
q2 = 0.8327.

Details about this procedure are given in [11]
From above presented results follows that for

specification of sewing ability the characteristics
computed from parameters of the Gumbell distribution
can be used. In according to clear interpretation and
other properties we recommend the median Me(T).
Higher Me(T) represents better sewing ability.

For estimation of parameters A, B the quantile
based technique is suitable.

Comparison of results from the table 1 and
table 2 leads to the conclusion that sewing ability is not
directly connected with loss modulus of sewing threads.

6.  Survival of Sewing Threads
In this section is proposed method for estimation of
reliability (survival) of sewing threads. The sewing
threads is considered as rope composed from m strands
(filaments). These strands forms system composed from
parallel organized units. The reliability is understand as
a resistance of the system against a load applied to it. It
is assumed that reliability is tested in such a way that
the load increases from 0 to the level causing the failure
of all units or up to maximal load. Further it is assumed

that the experiment is relatively fast, so that the time of
duration of the load does not influence the survival.
These conditions are common for testing of the
multifilament sewing threads.

The standard survival analysis approach and
counting processes models are used, however, instead
of time-to-failure, the breaking load of strands is
variable of interest.

The concept and relevant theory of counting
processes is described in the book[6]. Let the survival
of strands is described by i.i.d. random variables Uj

j=1..m with distribution given by f(u), F(u), h(u), H(u)
denoting the density, distribution function, hazard
function and cumulative hazard function, respectively.
It is assumed that at each moment the force applied to
the thread is divided equally among the (unbroken)
strands (filaments). The global force stretching the
thread is observed. However, as the break of strand
leads to an immediate re-distribution of the force to the
other strands (so that to the abrupt increase of the force
affecting each individual strand), the consequence can
be the break of several of remaining strands. For such a
set of strands broken practically at the same moment
the precise level of the strength causing the break of
some of them is actually not know. Thus, a part of data
is interval-censored. If the sufficient number of threads
is observed the sufficiently large set of uncensored data
are registered.

Let the n identical and independent threads are
tested. Denote by Uij random variables - survivals, by
Nij (u), Iij(u) related individual counting and indicator
processes for the j-th strand of the i-th thread (j= 1...m,
i=1...n). Further denote
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∑∑
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)u(I)u(I ),u(N)u(N

The common estimator of the cumulative
hazard function is the Nelson-Aalen one

∫=
u

0

N )v(I

)v(dN
)u(Ĥ (28)

where is set 0/0=0. The ability of the estimator to
approximate well the true H(u) depends on the indicator
processes for all values of strength u in the interval of
interest. Proof of asymptotic uniform consistency and
asymptotic normality of estimator defined by eqn. (28)
is derived in [7].
In the simple case the strands are considered to be only
two types. Standard one has hazard function h0(s) and
weaker one has hazard function h1(s)=c h0(s) for c>1.
(Koziol-Green scheme).
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The proposed model can be used for prediction
of the survival of threads when the survival distribution
of strands is known. Though the overall survival can be
derived from the order statistics distribution, its
computation is generally complicated. Therefore, the
Monte Carlo simulation is useful.

This simulation has been used for description
of breaks of threads composed from m=10 (filaments)
strands. The survival distribution of strands types were
chosen to be exp(1) and exp(2) i.e. constant hazard
rates h0=1 and h1=2h0. Fig. 3 shows comparison of
estimated hazard functions of survival of two sets of
threads.
 Threads in the first set are composed only from
stronger strands(10+0), while the threads in the second
set are composed form five strands of each type (5+5).
Foe each set the 100 threads are simulated.

 Based on the Kolmogorov-Smirnov test the
hypothesis about equality of distribution of breaking
strength for both sets oh threads is rejected ( on the5%
level of significance).

Fig.3 Estimated H(u) for two sets of threads, 5+5 (full
line) and 10+0 (dashed line)

This approach enables to simulate the survival
of sewing threads based on the assumptions about
filament types, number of filaments and corresponding
distribution of filaments breaks.

7.  Conclusion
For the evaluation of sewing ability the median value of
time between successive break of sewing threads during
sewing under standard conditions are proposed.
The methodology for statistical analysis of these data
based on the exploratory dada analysis principles are
shown. By using of this methodology the statistical
model of time between successive break is identified as
Gumbell distribution. Two techniques for estimation of
parameters of this distribution are presented. Program
system ADSTAT is well suited for EDA of one sample
problems on personal computers. Extensive description

of algorithms used in ADSTAT and examples of its
utilization for analysis of chemical data is given in the
book [4]. The Monte Carlo Study can be used for
prediction of multifilament sewing threads breaks
distribution. Corresponding statistical model is based
on the theory of counting processes.
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