
An interactive VHDL simulator for IEEE 802.11 networks

F. BELLOTTI, A. DE GLORIA, D. GROSSO, L. NOLI and M.OLIVIERI
Department of Biophysical and Electronic Engineering (DIBE)

University of Genoa
Via Opera Pia 11a 16145 Genoa

ITALY

Abstract: - In this paper we present a user-friendly simulator for IEEE 802.11 networks. The simulator is composed of
an interactive Java-based graphical interface and of a detailed VHDL model, running on a VHDL simulation engine.
In particular our VHDL description include the Medium Access Layer, that is the core of the protocol functionality
and performance, and the physical layer. The use of our model allows the analyzer to get precise and reliable
evaluation of the protocol performance and to realize a sort of network monitoring by obtaining important
information such as the collision rate and the channel occupation of each station. Thanks to the interactive graphical
interface our tool is suitable for utilization by hardware designers, communication systems specialists and
telecommunications students as well. Particular attention is spent to model typical situations of the transmissions over
the wireless channel such as different delays between the stations to simulate the effect of the distance between them,
or the presence of hidden terminals or the effects of the collisions. Finally we report the results, in terms of throughput

and transmission delay, that we obtained by simulating a network with eight stations. CSCC'99 Proceedings, Pages: 2331-2339

Key-Words: - IEEE 802.11, wireless networks, transmission protocols, Java, interactive simulator, education.

1. Introduction
IEEE 802.11 [6] is one of the most widely accepted
standards for wireless local area networks (WLANs).
WLANs have gained strong popularity in many
industrial and business markets because of the
possibility of using hand-held terminals to transmit
real-time information to centralized hosts for
processing. In addition, thanks to wireless technology,
users can access shared information from anywhere in
their organization without being connected to any wired
network. Thanks to the above reasons today WLANs
are recognized as a general-purpose data
communication system alternative to wired LANs.
The IEEE 802.11 standard defines the medium access
control (MAC) layer and the physical (PHY) layer,
compatible with the existing standards for higher layers
(link and higher) [4], of stations suitable to be
connected to a wireless 802.11 network The project
802.11 supports data rate of 1 Mbps and 2Mbps; the
operating frequency that has been allocated for the
802.11 WLANs ranges from 2.4 to 2.8 GHz. Currently
WLANs equipment is based on numerous proprietary
technologies which do not work with other vendors’
equipment. The aim of the project 802.11 is to built a
universal standard for the wireless communication in
such a way that a buyers should be able to purchase
products from any number of vendors without fear of
incompatibility.

In this paper we present a VHDL simulator of a IEEE
802.11 based wireless network.. The base node of the
network consists of an exhaustive description of the
MAC and of the physical layer. This description covers
all the MAC functionalities and services and represents
a physical layer able to supports both the two prevailing
spread spectrum technologies: direct sequence spread
spectrum (DSSS) [1,9] and frequency hopping spread
spectrum (FHSS) [11,12].
The simulator allows the user to build and to configure
a wireless network by varying the number of its nodes
and the value of their main parameters.
The simulator is composed of an interactive graphical
interface and of a VHDL entity.
The graphics interface has been developed essentially
to let the access to the configuration model and to the
simulation results available also to people who is not
necessarily acquainted with the complex world of a
hardware system level simulator . This feature may be
particularlty attractive mostly for two kinds of
applications. First, it makes possible to augment the
level of control over the network project, in the early
phase of development, also by communication systems
experts, who may not be hardware specialists.
Moreover it makes the simulation environment
available to students for educational purposes, without
requiring any specific knowledge of the internal
functionality and structure of the simulator. In fact the

technical background required to cope with the
interface exclusively consists in the knowledge of some
concepts about the telecommunication systems, as will
be explained in the next sections.
Through this model we simulated the entire MAC
functionalities and services. obtaining reliable
evaluations of the protocol performance. Our work was
developed starting with a large interpreting effort of the
standard specification [6]; this document is aimed at
describing the standard and all its features without any
implementation suggestions. In this paper we present
the structure of our simulator and the obtained
performance measures.

2. Technical background
A wireless local area network is a flexible data
communication system that uses radio frequency
technology to receive and transmit data over the air.
The IEEE 802.11 defines a basic architecture for
wireless networks. They are composed of basic service
sets (BSSs) each of them connected with a distribution
system (DS). The DS is not specified in the standard
[6], but is intended to be the means (which is usually
wired) through which different BSSs can communicate.
Each BSS consists of a group of mobile stations
associated to a single server called access point (AP).
An AP is a node that implements both the 802 and the
DS protocol and can connect the stations of its BSS to
the external word. The set of BSSs interconnected by
the DS forms an extended service set (ESS).
The basic access method (referred to as distributed
coordination function) implemented by the 802.11
stations, is the carrier sense multiple access with
collision avoidance (CSMA/CA) [2,8,10]. This method
implements the listen before talk mechanism. This
means that a station having a frame to transmit must
first sense the state of the channel in order to determine
if another station is transmitting. If the channel remains
idle for a fixed period of time (called DIFS [6]) the
station can proceed with its transmission. If the medium
is busy the station begins the backoff procedure that
consists of waiting for a random period of time before
listening again the channel. If the channel is still busy
another backoff interval is selected that is shorter than
the previous one. This process is repeated until the
station is allowed to transmit. The backoff procedure
minimizes collisions during contentions between
multiple stations.
In order to solve the problem of hidden terminals the
protocol provides an alternative way of transmitting
data. When the station get the channel by following the
CSMA/CA procedure it sends a short frame, called
request to send (RTS) [6,14]; on receiving an RTS the
receiver answers with a clear to send (CTS) frame

[6,14] after a period of time, called SIFS, shorter than a
DIFS. The CTS signals to the transmitter the successful
reception of the request. The reception of the CTS
enables the transmitter to send the data frame after
waiting for a SIFS. Both the CTS and the RTS contain
the duration of the subsequent transmission; thus, if all
the stations of the BSS can hear either the CTS or the
RTS a possible conflict is avoided.
In the following sections we present the structure of the
simulator and all its components.

3. The Simulator
The purpose of our work was to build a flexible and
user friendly tool for the simulation of a configurable
BSS. This goal was reached by providing the
environment where any number of stations can operate.
Each station consists of an architectural component
with a structural and/or behavioral VHDL description.
Through the simulator the user can select and introduce
operative conditions that affect the transmission of data
on the wireless medium. For example it is possible to
introduce different delays between the stations to
simulate the effect of the distance between them, or to
introduce hidden terminals or to consider the effects of
the collisions. By simulating our model in function of
the medium operative conditions and of some typical
features of the 802.11 stations (that we will see in the
next section) we obtained evaluations of parameters
that characterize the protocol performance: the
throughput and the transmission delay. With the
expression transmission delay we indicate the average
time between the moment the frame is scheduled to be
transmitted and the moment the frame is received. This
means that the time spent to access the bus is included
in the transmission delay.
The above consideration suggests that the model we
built can be used as an emulator of the protocol. We
chose the VHDL language to build the simulator .The
use of VHDL is motivated by its wide usage and by the
fact that it can be used in all design phases, from
documentation to simulation and synthesys. Our
simulator is not only a way to test an access procedure:
it is a tool to verify if the model of station to be
synthesised works as expected, and if the network built
with our station model gets the same statistic results
that characterise the protocol. Fig. 1 shows the logic
structure of the simulator. The stations, connected
through the channel simulator, communicate with a
sort of off-line link layer controller (LLC) that provides
the stimuli and records indications and confirmations
that the MAC layer sends to the LLC [7]. In order to
provide the required results the interpreter gathers and
processes some particular data generated by each
station. The tasks of the LLC are performed by a

module that we called genesis. This module is the
source of data, instructions and parameters that will
determine the station behavior during the simulation.
The genesis module takes as input the indications of the
graphical interface through which the user can set the
charachteristics of the network in terms of topology
(number of stations and presence of hidden terminals),
trasmission strategy and load desired on the wireless
medium. The transmission strategy depends on the
value of some of the MIB (Management Information
Base) parameters [6], that the user can set through the

interface. The MIB parameters are a great number of
variables that define the state of the station, heavily
affecting its behavior. For the traffic we decided to use
the load model called buffered load as shown in [3] The
buffered load represents the mean amount of data that
are waiting to be transmitted, and it equals the
throughput we would obtain if the time spent in the
access procedure was zero. The buffered loads of the
entire network is the sum of the buffered load of all the
active stations within the network.

Figure 1The logical structure of the simulator

 The genesis module builds the user defined network an
generates the MAC instructions for the stations. In the
same manner, the data to be transmitted, are turned into
MAC frame and then passed to the stations. The
channel simulator models the wireless media by
interconnecting the tx and rx channels of all the
stations. By exploiting these connections it inserts
delays between stations, simulates the presence of
hidden terminals and manages the collisions. In
addition in the next section we will see that a
probabilistic method has been developed to simulate
the presence of noise on the wireless channel.

When the simulation starts, a reset signal is sent to all
the stations in order to awake them. During the
simulation every station yields information to track the
history of the simulation. In particular every station
produces information about received/transmitted
frames that includes the transmitter/receiver address,
the reception/transmission instant and the time of the
frame scheduling. Furthermore the duration of the
simulation is recorded. The interpreter uses these data
to get the performance measures in terms of throughput
and transmission delay. Finally, in order to simulate the
data exchange between MAC and LLC, every station

passes to the genesismodule the received frame, the
information about the transmitter address and the result
(success or failure) of each executed instruction

4. The station
The stations included in our BSS model consists of a
MAC layer and a physical layer (PHY).
Our MAC layer is capable of supporting both the DSSS
and the FHSS Physical layer, and a transmission rate of

1 or 2 Mbps. According to the standard specification
[6], by setting some MIB parameters it is possible to
enable the MAC to use the RTS/CTS exchange or the
fragmentation [6] in data transmission.
Each station takes as input the reception channel and
the reset signal and its output are the transmission
channel and a data_end signal which is set after the
station executes its last instruction.

Figure 2 Architectural scheme of the station.

The channels are composed of a data field, used to
transmit the packets, and a state field set to busy when
a station begins its transmissions.
The architectural scheme of a station is shown in Fig. 2.
Our IEEE 802.11 station model is composed of a set of
concurrent processes, and it is split in two main parts:
transmission and reception part. Each process realizes
one or more 802.11 functions and exchanges
information with other processes to know the station
state. The MAC activity starts either when a new LLC
instruction has to be executed or when a frame has been
received by the PHY. In the first case the instruction
manager turns the LLC command into a MAC format.
Each instruction contains parameters necessary for its
execution; for example a send_data instruction contains
the type of frame to be transmitted, the destination
address and the access procedure. After instruction
decoding, the frame handler builds the frame according
to LLC directives and the state of MIB parameters. For
example the MAC can decide to use the fragmentation

and the RTS/CTS exchange depending on the frame
length and of the value on particular MIB parameters.
At this point, if required by the instruction, the
execution of the access procedure takes place. At first,
the MAC layer gets information about channel state
through the two supported ways: the virtual and the
physical mode [6]. The physical mode in 802.11
stations is implemented through the standard clear
channel assessment (CCA) [6] procedure; in our case
the physical procedure is realized with a test of the
channel state field. In order to simulate the presence of
noise on the wireless channel we implemented a
probabilistic CCA; this means that our CCA procedure
makes errors with an a-priori fixed probability.
The virtual mode exploits the duration field contained
in each transmitted frame. This field communicates the
length of the actual transmission to all the stations.
Each station records the value of the duration field in
the network allocation vector (NAV) [6] and decrements
it; the virtual procedure sees the channel free when the

NAV contains the zero value.
If both the virtual and the physical procedure sense the
channel idle for more than one DIFS a transmission
starts immediately, else the backoff-procedure begins
according to the standard. Once the station gets the
channel through the access procedure, the scheduled
frame is transmitted to the physical layer. At this pint
the physical layer convergence protocol (PLPC) [6]

sub-layer completes the MAC frame with the physical
preamble, (DFSS or FHSS) and the physical medium
dependent (PMD) [6] sub-layer puts the frame on the
channel and sets to busy the channel state.
When the station is not physically transmitting, it
always listens to the channel, waiting for frames
transmitted by other stations.

Network topology parameters
Number of stations in the network An integer ranging from 2 to 12
Hidden terminals The couples of terminals that cannot

communicate between each other
Workload definition
Buffered load Expressed as Kbytes/sec. A floating

point number
Buffered load step Is the interval of Kbytes/sec through

which the simulator steps if the user
requires the WIA mode

Strategy of transmission
Number of packets Overall number of packets to be

transmitted by each station
Length of packets Length in bytes of the high level

messages to be transmitted
MIB parameters
CTS/RTS Threshold An integer defining the threshold

over which the CTS/RTS
transmission mode is triggered

Fragmentation Threshold An integer defining the maximum
size over which packets have to be
fragmented for delivery

Table 1 The meaning of the data provided by the user through the interface.

When the antenna captures a frame the PLCP sub-layer
verifies its correctness and sends it to the MAC layer
without physical preamble. The MAC device called
reception manager starts analyzing the meaning of the
received frame. If it is not addressed to the station the
reception manager decodes the duration field and
updates the NAV, else it decodes the entire frame and
sends information to LLC about what it contains and
activates the suitable actions. For example, if the
received frame is an RTS frame the reception manager
after a SIFS answers with a CTS frame.

5. The graphics interface
While the network communication system simulator
can be accessed by the developers of the model or by
people discretely acquainted with the VHDL language,
a good enhancement to the package consists in the
possibility of exploiting a graphics interface through
which end users can interact with the complex
simulation world using “their own words”. The
complexity of the simulation environment, which is

essentially thought for the interaction with expert
programmers, could prevent potentially interested users
from using it, even if a small set of features of the tool
are to be exploited and known in this last case.
The graphics interface is of particular appeal if we
consider the actual utilisation of the tool by people who
is interested in the results of the simulation. In fact the
network simulator is likely developed by hardware
specialists while the performance of the overall system
is to be analyzed by communication systems experts.
And these kinds of knowledge are not always mastered
by the same person. Our tool makes it easier for
technical people to communicate, allowing a better
sharing of the competences and a deeper control over
the project in all the development phases. Moreover,
the presence of a graphics interface makes this tool
particularly suitable for an utilisation in the educational
field. Students and almost newbies can see an
application of the theoretic concepts and gain
familiarity with the numbers, the quantities and the
problems that the real communication systems involve.

The lexical terms through which users can interact with
the interface are those typical of the communication
systems jargon, which have been presented in the
technical background section of this paper.
The input interface
The input interface collects user provided data about
the quantities reported on table 1. We must highlight
that the present release of the graphics interface does
not provide access to all the results and all the
functionalities of the underlying simulator. In phase of
presentation of the input interface it must also be
underlined that the tool can be used to evaluate a single
configuration of workload (Normal mode) or to anlyse
the impact of different workloads on the same system
(WIA mode, Workload Impact Analyzer). Fig. 4
represent a snapshot of the interface.
The output interface
In the normal mode the interface shows the average
simulation obtained values for the system throughput
and for the transmission delay. In the WIA mode it
outputs two graphs that plot the throughputs and the
delays corresponding to buffered loads equispatieted of
intervals of Kbytes/sec desired by the user. Fig 5
illustrates an example of results obtained in the WIA
mode.
Development considerations
The interface has been written in Java [14], because of
the relatively ease of development of visual interfaces
in this language and because of the portability and
security features assured by Java bytecodes [13, 15]. In
fact, though we are running the interface code on the
same Pc hosting the VHDL simulator at present, it has
already been forseen the possibilty of decoupling the
applications. The interface could in fact be embedded
as an applet in a html page and deployed over the
Internet, dramatically enlarging the set of the potential
users.
Future enhancements to the interface may involve,
essentially for the educational sake, the accurate
visualisation of the different processing phases through
which an high level application packet is elaborated
during its path along the MAC and the physical layer.
In fact, not only is the original packet combined with
Correction Redundancy Code (CRC) at both the levels,
but also information about source, destination and
estimated transmission time is added by the MAC,
while the physical layer adds the preambole for the
synchronization of the demodulator and other data
describing the length of the paket and the transmission
bitrate.

6. Simulation Results
In this section we show the results obtained by
simulating the model of a network with eight stations.

Results are expressed in terms of throughput and
transmission delay. We computed the throughput as the
total number of correctly received bytes divided by the
simulation time; for the transmission delay we
considered the time between the instant in which the
frame begins the access procedure and the instant in
which the frame is correctly received by the destination
station. All of our simulations are realized as a function
of the user defined buffered load. Once the user sets the
value of the load expressed in Kbytes/sec, the genesis
module generates it by providing a sequence of
send_data and wait instructions
We realize simulations with and without hidden
terminals. We simulated the presence of hidden
terminals by setting that station n. 8 cannot listen to
stations n. 3, 4 and 5 In this case it is possible that a
station senses the channel idle even if another station is
transmitting causing a collision.
First we consider the situation without hidden
terminals. In case we use the CTS/RTS exchange before
transmitting the data packet we obtain that the
throughput (Fig. 3a) grows with the packet size. The
increase is smaller for big packet size because the
CTS/RTS length becomes negligible with respect to the
data length. For a low buffered load the channel is free
and the transmission delay (Fig. 3c) consists of the time
spent to put the frame on the channel. For a high
buffered load the channel is busy and the delay grows
with the packet size because the backoff procedure
becomes longer. In case we do not use the RTS/CTS
exchange, we have higher performance for low packet
size as shown in Fig. 3b and 3d. For high packet size
the time spent for re-transmission of lost data due to a
collision is greater than the time spent to transmit the
CTS/RTS exchange. Thus we have a loss in
performance. Anyway, as collisions are not very likely,
the difference between the two previous situations is
not great. If hidden terminals exist the use of the
CTS/RTS frames leads to a great gain in terms of
throughput and transmission delay as shown in Fig. 3e,
3f, 3g and 3h. Finally we present the results obtained
by introducing a probabilistic CCA procedure. This
consists of considering a fixed error probability during
the physical channel sensing. This simulates the error
introduced, in the real situation, by the presence of
noise, of the capture effect and of fading. We realized
with a fixed packet dimension (1024 byte) and by
varying the error probability. Fig. 3i and 3l show how
this kind of errors can dramatically affect the
performance of the wireless network.

Figure 3 Simulations results. Network without hidden terminals: Throughput with (a) and without (b) cts/rts exchange;
transmission delay with (c) and without (d) cts/rts exchange. Network with hidden terminals: Throughput with (e) and
without (f) cts/rts exchange; transmission delay with (g) and without (h) cts/rts exchange. Network with probabilistic
CCA; throughtput (i) and transmission delay (l)

a b c

d e f

g
h i

l

Figure 4 Snapshots of input interface

Figure 5 Snapshot of output interface

7. Conclusions
We have presented a simulation environment for
evaluating wireless network configuration. The result
of this work is a valuable tool for wireless network
designers, as it offers a user-friendly Java-based
graphic interface and implements a sophisticated
VHDL model of the whole system. The work is also
an interesting example of the concurrent execution of
Java programs and VHDL model simualtion.

References

[1]. C. Andren, “A Comparison of Frequency
Hopping and Direct Sequence Spread Spectrum
Modulation for IEEE 802.11 Applications at 2.4
Ghz”, Harris Semiconductor Palm Bay, Florida.

[2]. K.C. Chen, “Medium Access Control of
Wireless LANs for Mobile Computing”, IEEE
Network, September/October 1994.

[3]. W. Diepstraten, “A wireless MAC protocol
comparison.” -”, Doc. IEEE P802.11-92/51, May
1992.

[4]. http://grouper.ieee.org/groups/802/index.html.
[5]. IEEE Standards Department, IEEE Std.

802.11-1997, “Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY)
Specifications”.

[6]. IEEE Standards Department, IEEE Std 802-
1990, Local and Metropolitan Area Networks:
IEEE Standard Overview and Architecture.

[7]. L. Kleinrock, F.A. Tobagi, “Packet Switching
in Radio Channels: Part I - Carrier Sense Multiple-
Access Modes and Their Throughput-Delay
Characteristics”, IEEE Trans. On Communications,
Vol. COM-23, No. 12, December 1975. L

[8]. R.L.Pickholtz, D.L. Schilling, L.B. Milstein,
“Theory of Spread-Spectrum Communications - A
Tutorial”, IEEE Trans. On Communications, Vol
COM-30, No.5, May 1982.

[9]. C.A. Rypinski, “Comments On - A Short
Tutorial On CSMA -”, Doc. IEEE P802.11/91-56,
May 1991.

[10]. D.L. Schilling, L.B. Milstein, R.L. Pickholtz,
M. Kullback, F. Miller, “Spread Spectrum for
Commercial Communications”, IEEE
Communications Magazine, April 1991.

[11]. R.Scholtz, “The Origins of Spread-Spectrum
Communications”, IEEE Trans. On
Communications, Vol. COM-30, No.5, May 1982.

[12]. J. Weinmiller, H. Woesner, J.P. Ebert, A.
Wolisz, “Analyzing the RTS/CTS Mechanism in
the DFWMAC Media Access Protocol for Wireless

LANs”, Electrical Engineering Department,
Technical University Berlin.

[13]. B. Venners. Inside the Java Virtual Machine,
McGraw Hill, New York, NY, 1998.

[14]. K. Arnold,J. Gosling. The Java Programming
language, Addison-Wesley, 1997

[15]. T.Lindholm, F.Yellin. The Java virtual
Machine specification, Addison-Wesley, 1997

