
Dynamic Programming as a Software Component

Oege de Moor
Programming Tools Group, Computing Laboratory

Oxford University
Wolfson Building, Parks Road, Oxford OX1 3QD

United Kingdom

Abstract: - Dynamic programming is usually regarded as a design technique, where each application is
designed as an individual program. This contrasts with other techniques such as linear programming, where
there exists a single generic program that solves all instances. From a software engineering perspective, the
lack of a generic solution to dynamic programming is somewhat unsatisfactory. It would be much preferable if
dynamic programming could be understood as a software component, where the ideas common to all its
applications are explicit in shared code. In this paper, we argue that such a component does indeed exist, at
least for a large class of applications in which the decision process is a sequential scan of the input sequence.
We also assess the suitability of C++ for expressing this type of generic program, and argue that the simplicity
offered by lazy functional programming is preferable. In particular, functional programs can be manipulated as
algebraic expressions. The paper does not present any novel results: it is an introduction to recent work on the
formalisation of algorithmic paradigms in software engineering.

Key-Words: - Dynamic programming; sequential decision process; software component; functional
programming; algebra of programming; program derivation.

1 Introduction
In introductory courses on algorithm design,
dynamic programming is usually taught by example.
Students are presented with a number of typical
applications, and given an informal statement of the
principle of optimality. By doing a number of
similar examples in exercises, they then acquire the
skill to apply dynamic programming to other
problems.
 There exist numerous formalisations of dynamic
programming that state the principle of optimality as
a monotonicity condition, for example
[17,18,20,23,29]. These works do however stop
short of presenting a single, generic program that
solves all applications of their formalisation at one
stroke. The construction of such a generic program,
and the appropriate means for expressing it, is the
subject of this paper.
 The quest for generic software components is one
of the main goals of software engineering. It is now
commonplace for programmers to use collections of
such generic components (usually called application
frameworks) in the construction of e.g. user
interfaces, data bases, and messaging systems. In
this paper, we would like to suggest that it might be
possible to construct an application framework for
the solution of optimisation problems as well. Such

an application framework would harness much of
the expertise now shared by a limited number of
experts, and make their results available to a wider
audience of programmers.
 The structure of the paper is as follows. We start
by presenting the class of problems to which our
generic program applies – this includes many of the
sequential decision processes as formalised by Karp
and Held [20], but not all typical examples of
dynamic programming. We then proceed to sketch
the generic algorithm for solving that class of
problems.
 It may seem natural to code this type of generic
algorithm as a C++ template, and we examine
briefly how this may be achieved. There are a
number of reasons, however, why C++ is not an
appropriate medium for this type of generic
program, and we argue that a lazy functional
programming language such as Haskell is better
suited to the task. Haskell programs can be regarded
as algebraic expressions that can be manipulated to
improve code quality.
 Indeed, the generic program presented in this
paper was discovered using an algebra of programs
that generalises Haskell, by manipulating relations
instead of functions. This generalisation allows one
to deal with the nondeterminacy inherent in
optimisation problems. Without going into detail,

we sketch the characteristics of such a calculus for
program derivation. Finally, we discuss related
work, both in combinatorial optimisation and in
software engineering. Some of this related work
suggests further improvements to our software
component.
 This paper does not present any novel results.
The generic algorithm was first presented in [24],
and its formal development is a chapter in [4]. The
purpose of this paper is to present these known
results to researchers with an interest in dynamic
programming, who are perhaps not so familiar with
the terminology and notation of modern software
engineering.

2 A Generic Problem
Our generic problem can be viewed as an instance of
the generate-and-test paradigm: first generate all
candidate solutions, then test for feasibility, and
finally select a feasible solution that is optimal. In
algorithm design, this is called the exhaustive search
paradigm.
 In most applications of dynamic programming,
the generation of all candidate solutions is a decision
process: at each step of the generation, one can
make a choice between two (or more) alternatives.
To formalise this, let us assume that the input is
presented as a sequence of values

[a1, a2, ..., an] .
Generation of a candidate solution starts with a seed
value, say e. At each step, there is a choice on how
to add in the next item ai. The first possibility is to
use the binary operator (⊕), and the alternative is to
use (⊗). A typical candidate solution will thus
consist of a number of applications of (⊕),
interleaved with applications of (⊗):

(((((e ⊕ a1) ⊕ a2) ⊗ a3) ⊕ a4) ...) ⊗ an .
The set of all candidate solutions is obtained by
interleaving the two operators in all possible ways. It
is obvious how this could be generalised to more
than two choices, but for simplicity we shall confine
ourselves to just two. It follows that the generation
of candidate solutions is characterised by three
quantities: the seed value e, and the two binary
operators (⊕) and (⊗).
 To also specify the feasibility test, we shall need
a feasibility predicate, which we shall call p.
 Finally, we need to define the selection of an
optimal element. Usually this is specified through an
objective function (which is to be minimised or
maximised), but here we shall specify it through a
comparison relation R that is a preorder. (A preorder
is a binary relation that is reflexive and transitive.)

This formulation will make it easier to pin down the
applicability conditions of our algorithm. An
optimal element from the set of feasible solutions is
one that is minimal in the preorder R.
 Summing up, our generic problem is given by a
generator that is a decision process (e, (⊕) and (⊗)),
a feasiblity predicate p, and a preorder R. Provided
these five quantities satisfy certain conditions, which
amount to the principle of optimality, our generic
algorithm will provide an efficient method of
computing an optimal feasible solution.
 Before proceeding to that generic algorithm, we
first consider some specific instances of the generic
problem.

2.1 Example: knapsack
In the 0/1 knapsack problem, the sequence of input
values consists of (value,weight) pairs, which we
shall call items. A solution is a selection of items,
which we also represent by a (value, weight) pair.
The seed solution is the empty selection, whose
value and weight are both 0:
 e = (0,0) .
For each item (v, w), we have the choice of
including it in a candidate solution (tv, tw), or to
leave it out. Our two binary operators are therefore
defined as follows:

(tv, tw) ⊕ (v, w) = (tv+v, tw+w)
(tv, tw) ⊗ (v, w) = (tv, tw) .

The feasibility predicate is the test whether the total
weight has not exceeded a given capacity c:

p (tv,tw) = (tw ≤ c)
Finally, one solution is better than another if its total
value is greater, so the preorder R is given by:

(tv1,tw1) R (tv2,tw2) = tv1 ≥ tv2 .

2.2 Example: bitonic tours
The bitonic tours problem, due to J. L. Bentley, is a
variation on the well-known Euclidean travelling
salesman problem. Given is a set of vertices in the
plane, and it is required to find a cyclic path that
visits each point exactly once. Such a path is called a
tour. The general problem of computing a shortest
tour is NP-complete, so we simplify the problem by
restricting our attention to bitonic tours. A tour is
bitonic if it starts at the leftmost point, goes strictly
left to right to the rightmost point, and it goes
strictly right to left back to the starting point. The
problem is to compute a shortest bitonic tour; we
may assume that no two vertices have the same x-
coordinate. This formulation of the problem is
adapted from [11].

To illustrate, Fig. 1 shows a set of points with an
shortest tour on the left, and a shortest bitonic tour
on the right.

Fig. 1: bitonic tours

a tour a bitonic tour

We assume that the points v1, v2, ..., vn are sorted by
x-coordinate, so the generation of candidate
solutions will proceed by a left-to-right plane sweep.
 A bitonic tour can be represented as a pair of two
disjoint sequences, one for each uni-directional part:
 ([a1, a2, ..., an], [b1, b2, ...,bm]) .
Of course we do not wish to generate the same
bitonic tour twice, so we stipulate that the last vertex
an of the first component is the rightmost vertex.
When this rule is applied throughout generation of
tours, each bitonic tour has only one representation.
 The smallest bitonic tour consists of just two
elements, namely the two leftmost vertices. It
follows that the seed is defined by

e = ([v2], [v1]) .
For each vertex vi with i > 2, we have the choice
between including it on either part of the tour:

([a1, a2, ..., an], [b1, b2, ...,bm]) ⊕ vi

 =
(([a1, a2, ..., an, vi], [b1, b2, ...,bm]) ,

and
([a1, a2, ..., an], [b1, b2, ...,bm]) ⊗ vi

 =
([b1, b2, ...,bm, vi], [a1, a2, ..., an]) .

Note the reversal of the components in the definition
of (⊗): this is to enforce the requirement that the
rightmost vertex is always on the first component of
a tour.
 Any bitonic tour is feasible, so the predicate p
always returns true:

p (x,y) = true .
We could have chosen the generator and the
feasibility predicate so that all tours get generated,
and then pick out those that are bitonic. That model

of the problem would however not lead to an
efficient solution.
 An optimal bitonic tour is one whose length is as
small as possible. The length of a bitonic tour is the
sum of the path lengths of its two components, plus
the length of the two edges that connect their
leftmost and rightmost vertices. We can thus define
the preorder R by
 (x1, y1) R (x2, y2)
 =

length(x1, y1) ≤ length(x2,y2) .
 It is worthwhile to reflect for a moment on the
difference between the models of the bitonic tours
problem and of the knapsack problem. In bitonic
tours, we decided to model the problem of finding
an optimal tour itself, rather than its length. This is
just a matter of convenience: in order to compute the
length, we need at least the last elements of both
components of a tour, so it is easier to explain the
model for finding tours rather than just lengths. As
we shall see, the generic algorithm is not
significantly more complicated when we wish to
find the optimal object itself.

2.3 Example: bus stop placement
Our final example is an exercise from one of the
standard texts on dynamic programming [14]: “A
long one-way street consists of m blocks of equal
length. A bus runs uptown from one end of the street
to the other. A fixed number n of bus stops are to be
located so as to minimise the total distance walked
by the population. Assume that each person taking
an uptown bus trip walks to the nearest bus stop,
gets on the bus, rides, gets off at the stop nearest his
destination, and walks the rest of the way. During
the day, exactly Bj people from block j start uptown
bus trips, and Cj complete uptown bus trips at block
j. Write a program that finds an optimal location of
bus stops.”

The input can be represented as a sequence
[B1 + C1, B2 + C2, ..., Bm + Cm]

Each item Bj + Cj represents the number of people
passing through block j.
 We assume that bus stops are to be placed in front
of blocks (and not at block boundaries).
Furthermore, if there is a bus stop in front of a
block, people passing through that block do not need
to walk at all. As an example, consider the situation
depicted in Fig. 2.

Fig. 2: bus stops

50 12 25 33 15 19 22 58 12 42 30
* * * * * * * * * * *
2 1 0 1 2 1 0 1 1 0 1

The blocks are represented by vertical bars, and the
number (in bold face) under each bar is the number
of people passing through that block. Three bus
stops have been placed, and arrows indicate the
direction people walk to get to a bus stop. For
example, to get from the first block to the bus stop,
50 people have to walk two blocks. The bottom row
of numbers indicates the distance to the nearest bus
stop. By taking the dot product of the two rows of
numbers, we obtain the total cost of the arrangement
shown.
 We can represent a placement of bus stops as a
partition of the input sequence, with a bus stop at the
beginning of each partition component except the
first. For this representation to be correct, we need to
assume the existence of a fictitious block at the
beginning of the street, with 0 people passing
through it. The arrangement in Fig. 2 is thus
represented by:

[[0, 50, 12],
 [25, 33, 15, 19],
 [22, 58, 12],

 [42, 30]] .
The role of 0 at the beginning is to allow the
placement of a bus stop at the first block in the
street.
 Readers who are not accustomed to the data
structuring facilities of modern programming
languages may wish to contemplate this
representation somewhat further. A partition is a
sequence, whose components are lists themselves. It
would of course be possible to code this
representation purely in terms of indices, but the
intended meaning would be much less perspicuous.
 How do we generate all possible placements by a
decision process? The starting point is the seed
value e, representing a fictitious building at the
beginning of the street:

e = [[0]] .

Note that e is a list with one element (namely [0]),
and that element itself is a list containing 0.
 Given a block (that is the number of people
passing through it), we can decide either to place a
bus stop, or not. Placing a bus stop means starting a
new partition component, whereas leaving out a bus
stop corresponds to gluing the new block at the end
of an existing partition component. This leads us to
the following definitions of the two choice
operators:
 [[0, b1, b2, ..., bi1],
 [bi1+1, ..., bi2],
 ... ,

 [bik+1, ..., bij]] ⊕ bij+1

 =
[[0, b1, b2, ..., bi1],

 [bi1+1, ..., bi2],
 ... ,

 [bik+1, ..., bij],
 [bij+1]]
and

[[0, b1, b2, ..., bi1],
 [bi1+1, ..., bi2],
 ... ,

 [bik+1, ..., bij]] ⊗ bij+1

 =
[[0, b1, b2, ..., bi1],

 [bi1+1, ..., bi2],
 ... ,

 [bik+1, ..., bij, bij+1]] .

Recall that we should place exactly n bus stops.
Obviously taking more bus stops would decrease the
total amount of walking, so the problem is unaltered
if we only require that there are at most n bus stops.
Accordingly we define the feasibility predicate by

p ([x1, x2, ..., xk]) = (k ≤ n+1) .
That is, there should be at most n+1 components in a
partition, because each component xi represents a
bus stop, except x1. The advantage of this definition
over one where (≤) is replaced by (=) will become
clear later. Briefly, we require that feasible solutions
to the whole problem are composed of feasible
solutions to sub-problems. That property would not
be satisfied if (≤) were replaced by (=).
 We omit a formal definition of the function walk
that returns the total walking cost of a particular
placement; its definition should be clear from the
example, and the details are not illuminating. One
placement xs is preferable over another placement ys
if its total walking cost is less. The preorder R in our
generic problem statement is therefore defined:

xs R ys = (walk(xs) ≤ walk(ys)) .

3 A Generic Solution
An instance of our generic problem is specified by a
decision process (the seed e and two operators (⊕)
and (⊗)), a feasibility predicate p, and a preorder R.
Our aim is to give an algorithm that solves the
generic problem, in terms of these five parameters,
as well as some others whose existence is implied by
the principle of optimality.
 Of course such a generic solution should satisfy
certain criteria in order to be acceptable. First, for
each instance, its asymptotic time complexity should
be as good as a specialised program derived by
traditional methods. Second, all the interesting
processing should happen in the statement of the
algorithm, and not in its parameters. In particular,
we shall require that all parameters are (amortised)
constant time operations.
 It would not be too difficult to give generic code
for dynamic programming that takes the functional
equations, derived by the programmer, as a
parameter, and only performs the task of tabulating
intermediate solutions. We do not consider that an
acceptable solution, for the derivation of functional
equations is in itself a non-trivial task. Thus the use
of our generic algorithm does not require the
programmer to record the functional equations
explicitly: all she needs to do is to verify a number
of monotonicity conditions. Below we first present
these conditions, and then proceed to describe how
they are exploited in the algorithm.

 These are the applicability conditions of our
algorithm: there exist a predicate q, a preorder S and
a total preorder T such that the following are
satisfied

1. p(e) holds, and p (x ⊕ a) = q (x ⊕ a) ∧ p(x),
2. x R y and x S y and q (y ⊕ a) implies

 (x ⊕ a) R (y ⊕ a) and
 (x ⊕ a) S (y ⊕ a) and q(x ⊕ a),

3. x T y implies (x ⊕ a) T (y ⊕ a),
4. conditions 1-3 also hold when operator (⊕) is

replaced by (⊗).

 The first condition says that feasible solutions are
composed of feasible solutions to sub-problems.
Clearly if this condition is satisfied at all, we could
take q to be p itself. However, it often happens that
we can chose a test for q that is computationally less
expensive than p.
 Condition (2) is a dominance criterion. It says
that if x is better than y (that is x R y and x S y), then
the extension of x is better than the extension of y;

furthermore, the extension of x is a feasible solution
if the extension of y is. The use of dominance
criteria is common in formalisations of dynamic
programming, and they are also the basis of a well-
known strategy for speeding up naive dynamic
programming algorithms [15,16,30].
 The third condition states that the operators are
monotonic on T. The role of T will be to order
intermediate solutions in a table; this condition
implies that we do not need to re-order existing
elements after they have been updated.

Our algorithm keeps a collection of feasible
solutions in a list L. The list L = [x1, x2, ..., xk] is
ordered so that consecutive elements are related by
the preorder T:

x1 T x2 T ... T xk .
Initially the list L contains only one element, namely
the seed [e]. The first applicability condition states
that e is feasible.
We then scan the sequence of input items from left
to right. For each item a, we compute two new lists:

L1 = [x1 ⊕ a, x2 ⊕ a, ..., xk ⊕ a]
and

L2 = [x1 ⊗ a, x2 ⊗ a, ..., xk ⊗ a] .
Because of the third condition, both of these lists are
ordered with respect to T. Merging L1 and L2 gives a
new list, still ordered with respect to T. The merging
operation is well-defined because T is assumed to be
total. The merged list may contain a number of
infeasible elements. The first condition, together
with the fact that all elements of L were feasible,
tells us that we can test elements of the merged list
for feasibility using q. Removing the infeasible
elements gives a new ordered list of feasible
solutions, which we shall name L’.
 In principle we could continue by considering the
next item on the input, but doing so would be
wasteful: the dominance criterion gives the
opportunity of substantially reducing the size of L’.
To do so, we compare adjacent elements in L’, and
discard any y for which there exists a neighbour x
such that both x R y and x S y. We call this step
squeezing. Finally, after squeezing, we obtain our
new list L, and we can consider the next item in the
input sequence.
 Upon termination of the input processing, we
return an element of L that is minimal in the
preorder R.

 It is worthwhile noting that the choice of T has a
big impact on the effectiveness of squeezing,
because we only compare adjacent elements.
Although none of the conditions relates T to R and

S, it is usually a simple combination of these two
preorders. The idea of implementing dynamic
programming through merging and squeezing is due
to Ahrens and Finke [1], who applied it to the
knapsack problem.

3.1 Example: knapsack
Let us now examine appropriate choices for q, S and
T in the knapsack problem. The feasibility predicate
p is

p (tv,tw) = (tw ≤ c) .
This is cheap to evaluate, so we can take q to be p
itself. The first condition is satisfied, because the
capacity c is non-negative, and the weights of
individual items are also non-negative.
 To satisfy the dominance criterion, we need a
preorder S so that

(tv1, tw1) S (tv2, tw2) and tw2 +w ≤ c
implies

tw1+w ≤ c .
The obvious choice for S is therefore

(tv1, tw1) S (tv2, tw2) = (tw1 ≤ tw2) .
It remains to choose T so that squeezing can
eliminate dominated solutions. One such choice is

(tv1, tw1) T (tv2, tw2) = (tv1 ≥ tv2) .
This guarantees that the list of intermediate solutions
is strictly decreasing both in value and in weight. If
the weights are integers, it follows that the time
complexity of the resulting algorithm is O(cn),
where n is the number of items in the input
sequence. If the weights are floating point numbers,
the running time may be exponential. Admittedly it
is possible to obtain algorithms that are much faster
in practice, through the combined use of dynamic
programming and branch-and-bound [22].

3.2 Example: bitonic tours
In the bitonic tours problem, the feasibility predicate
is constant true, so the first condition is trivially
satisfied.
To also satisfy the dominance criterion, we need a
preorder S such that for any two tours t1 and t2: if
 t1 S t2 and length(t1) ≤ length(t2),
we have both

length(t1 ⊕ v) ≤ length(t2 ⊕ v)
and

length(t1 ⊗ v) ≤ length(t2 ⊗ v) .
That is, when we add a new vertex to either
unidirectional part of t1 and t2 , tour t1 is still shorter
than t2 . Clearly this condition can only be satisfied if
the endpoints of the unidirectional parts coincide.
We therefore define:

 ([a1, a2, ..., an], [b1, b2, ...,bm])
S
([c1, c2, ..., ck], [d1, d2, ..., dl])

 =
an = ck and bm = dl .

We define the preorder T to be trivially true, so that
the merge step degenerates into a simple list
concatenation. Because all tours obtained by
application of (⊗) have the same endpoints,
squeezing results in only one solution being added
to the list of candidates at each step. In this instance
the time complexity of the algorithm is therefore
quadratic.

3.3 Example: placing bus stops
In the bus stops example, the feasibility predicate is
the requirement that we place no more than n stops.
If we keep the number of allocated stops as part of
the generated solution, this is an easy test, so we can
take the predicate q in the generic algorithm to be
the feasibility predicate p itself.
 Recall that in this problem, the operator (⊕)
places a bus stop (by starting a new list partition
component), and the operator (⊗) skips a block (by
gluing it to an existing list partition component).
These two operators only preserve the order of
walking cost if two partitions have the same last
component. To wit, if

walk([x1, x2, ..., xk]) ≤ walk([y1, y2, ..., yi])
 and k ≤ i
 and xk = yi

 and i +1 ≤ n + 1
then

walk([x1, x2, ..., xk ,[a]])
 ≤ walk([y1, y2, ..., yi,[a]])

 and k+1 ≤ i+1
 and [a] = [a]
 and k+1 ≤ n + 1 .
This is the relevant property for (⊕); the same holds
for (⊗). It follows that we can instantiate the
preorder S in the generic algorithm to

[x1, x2, ..., xk] S [y1, y2, ..., yi]
 =
 k ≤ i and xk = yi .
It may appear that this is a computationally
expensive comparison, as xk and yi are both
sequences. However, recall that [x1, x2, ..., xk] and
[y1, y2, ..., yi] partition the same list of blocks, so we
can make the test xk = yi by comparing the lengths
of xk and yi.
 It remains to define a total preorder T for
ordering partial solutions. As remarked above,
making an appropriate choice can greatly benefit the

effectiveness of squeezing. A strategy that often
succeeds is to take a relaxation of S. Instead of the
conjunction (as in the definition of S), we take a
lexicographical composition:

[x1, x2, ..., xk] T [y1, y2, ..., yi]
 =
 k < i or (k = i and |xk | ≤ |yi|) .
(Here |z| denotes the number of elements in the
sequence z.) Clearly this preorder is total, and
furthermore the operators in our decision process are
monotonic on this preorder.
 The resulting program for the bus stops problem
has time complexity O(nm2), where n is the number
of bus stops, and m the number of blocks.

3 Programming the solution
The generic algorithm has been presented in some
detail, but further work is required to actually
program the algorithm, once and for all, as a
software component. Such generic implementations
are the topic of much current work in specialised
branches of algorithm design, for instance in
computational geometry [25]. There, standard
algorithms are coded in C++, using features such as
abstract classes and templates.
 In this section, we sketch how our generic
algorithm can be programmed as a C++ template,
and we assess the suitability of C++ for exploring
generic algorithms. It turns out that C++ forces the
programmer to obfuscate the logical structure of the
algorithm, but in return it offers a high degree of
efficiency.
 We contrast the lack of expressiveness in C++
with that of the functional programming language
Haskell. Haskell allows us to concisely express the
algorithm as presented above, keeping its logical
structure, without severely compromising efficiency.
 It is assumed that the reader has some familiarity
with the basic concepts of C++, but not necessarily
with those of Haskell.

4.1 A program in C++
We model our algorithm through a template that
takes four parameters: a class of input items (called
Item), a class of solutions (named Sol), an integer
bound on the number of partial solutions, and an
integer bound on the number of input values. The
seven parameters to the algorithm are given through
pure virtual functions, with prototypes:
 seed e: seed(Sol&)

operator (⊕): void op1(Sol,Item, &)
operator (⊗): void op2(Sol,Item,Sol&)
predicate q: int feasible(Sol)

preorder R: int cheaper(Sol,Sol)
preorder S: int lighter(Sol,Sol)
preorder T: int precedes(Sol,Sol)

 To use the algorithm, one instantiates the
template, and then derives a concrete class from that
instance. For example, in a solution to the knapsack
problem, we would define appropriate classes
named Item and Selection, and then
 class KpSdp : public Sdp<Item,Selection,50,100>
 { ... };
with methods to override the virtual functions that
are parameters to the algorithm. To use the
algorithm, one calls the constructor of KpSdp, which
takes an array of input items and its size as
parameters. Next, one calls the method sdp (defined
in the Sdp template) to carry out the calculation, and
a final call to report(&ostream) prints a solution.
One can then re-initialise with a different input set,
and repeat the processing.
 Using the C++ template Sdp is straightforward, if
somewhat cumbersome. The instantiation for the
knapsack problem, for example, takes about 70 lines
of trivial C++.
The main difficulty in the generic program itself lies
in the updating of the list of intermediate solutions.
In our description of the algorithm, that update
consists of four separate phases. First two new lists
of candidate solutions are constructed, using the
methods op1 and op2. Next, these two lists are
merged. Third, the infeasible solutions are removed
from the merged list. Finally, we squeeze the list,
removing any element that is dominated by one of
its neighbours.
 The obvious way of implementing the table of
intermediate solutions is through an array of fixed
size. Admittedly this places a burden on the
programmer to determine appropriate bounds, but it
leads to very fast code, and it avoids the memory
management problems that would arise from
pointer-based structures. Such problems become
especially nettlesome because partial solutions refer
to each other, so the complete solution can be
recovered from the table by report.
 Unfortunately, however, the separation Sol into
stages (of the list update) does not make sense for a
table of fixed size. The intermediate lists obtained
by merging, filtering and squeezing may easily grow
too large. The C++ program therefore has to
abandon this neat separation, and carry out all four
phases in an interleaved fashion. The resulting loop
has 4 levels of nested if statements. Some of this
complexity can be hidden through appropriate
procedural abstraction, but even then the code is
hardly conducive to experimentation. Our C++
implementation of the list update is about 50 lines,

so directly including it in this paper was quite out of
the question.

4.2 A program in Haskell
Haskell is a functional programming language in the
tradition of Lisp [5]. It differs from Lisp in a number
of respects, however. For example, Haskell is a
strongly typed language, and it does not allow any
side-effects whatsoever. Haskell programs are
evaluated lazily, so that an expression is only
evaluated if it is needed to produce the final result.
 Before we return to a discussion of the list update
step in our generic algorithm, it may be helpful to
first get an impression of what programs in Haskell
look like. In Fig. 4, the full text of our generic
algorithm is displayed; absolutely no detail has been
left out. It may seem odd that there is no mention of
types at all, and yet we claim that Haskell is a
strongly typed language. This is because in Haskell,
the compiler can automatically work out the types
by itself. One thus gets the advantages of type safety
without any of the burdens.

Fig. 4 Haskell program

listmin r = foldr1 choose
 where choose a b = if r a b then a else b

meet r s a b = r a b && s a b

squeeze r [] = []
squeeze r [a] = [a]
squeeze r (a:b:x) | r a b = squeeze r (a:x)
 | r b a = squeeze r (b:x)
 | otherwise = a:squeeze r (b:x)

merge r [] y = y
merge r x [] = x
merge r (a:x) (b:y) = if r a b
 then a:merge r x (b:y)
 else b:merge r (a:x) y

purge v q t x y = squeeze v (filter q (merge t x y))

sdp r s t q o1 o2 c = listmin r .
 foldr (step (meet s r) t q o1 o2) [c]

step v t q o1 o2 a xs = purge v q t
 [o1 a x | x <- xs]

 [o2 a x | x <- xs]

Instantiating the generic program in Haskell is an
equally snappy affair. Fig. 5 shows the code for the
knapsack problem. This instantiation does not only
compute the optimal value, it also returns a selection

that realises that value. The Haskell code is so much
shorter than the C++ equivalent because we do not
need to declare an Item class and a Selection class:
these are just tuples of values. Furthermore, in lieu
of the rather cumbersome use of an abstract base
class, we can simply pass the parameters as function
arguments. The brevity is thus partly due to the fact
that tuples, lists and functions are all manipulated
with the same ease as values of primitive type (such
as integers).

Fig. 5 Instance for knapsack

kp c = the . sdp gv lw gv ok [cons,rhs] empty
 where value (x,v,w) = v
 weight (x,v,w) =w

the (x,v,w) = x
gv s t = value s >= value t
lw s t = weight s <= weight t
ok s = weight s <= c
cons (a,b) (x,v,w) = ((a,b):x, a+v, b+w)
rhs (a,b) (x,v,w) = (x,v,w)
empty = ([],0,0)

Let us now examine how the Haskell program
implements the list update step. Recall that we
described this step as having four phases:
1. Construction of two new candidate lists, using

the binary operators (⊕) and (⊗).
2. Merging of these two lists with preorder T.
3. Removal of infeasible solutions with

predicate q.
4. Squeezing with the dominance criterion

(R and S).
All four phases are implemented in the function
called step. It takes 7 arguments: v is the dominance
criterion (R and S), t is the preorder T (capital names
have a special purpose in Haskell), q is the
feasibility test, o1 and o2 are the operators (⊕) and
(⊗). The penultimate argument a is an input item,
and xs is the list of intermediate solutions. The result
of step is the new list of intermediate solutions.
 The first phase of the computation is the
construction of two new lists:

[o1 a x | x <- xs] and [o2 a x | x <- xs] .
This feature of Haskell, which allows us to use a set-
like notation for lists, is a useful shorthand. These
two lists are passed as arguments to the function
purge.
 The function purge performs the next three
phases of the computation of the new list of
intermediate solutions. Its definition shows these
phases as successive function applications:

squeeze v (filter q (merge t x y)) .

The function (merge t x y) merges the two candidate
lists, (filter q) removes all elements that do not
satisfy q, and finally (squeeze v) removes dominated
neighbours.
 It now appears as if our Haskell program suffers
from precisely the problem that we sought to avoid
in C++, namely the creation of huge intermediate
results. This is however not the case, because all
expressions are evaluated lazily. This implies that
the four phases of step execute in tandem: the
elements of the two candidate lists from the first
phase are generated on demand by merge. The result
of merge is generated on demand by filter, and the
computation of each element from filter is triggered
by the computation of squeeze. The four phases thus
interact in much the same way as pipes do in the
Unix operating system. It follows that, despite the
nice compositional description in the program, we
produce the same entangled computation that had to
be explicitly coded in C++.
 Interested readers may wish to glance at [24],
which describes the same generic algorithm as this
paper, for an audience of programming language
researchers. In particular, it contains the full Haskell
code for the bitonic tours and bus stops problems.
As in the case of knapsack, the instantiations are
extremely compact.

5 An Algebra of Programs
In his Turing Award lecture, John Backus suggested
that functional programs (written in languages such
Haskell) form an algebra, and that programs can be
algebraically manipulated to improve their time and
space behaviour [2]. The example of the previous
section gives some credence to the possibility.
Haskell programs are so short that their algebraic
manipulation is practically feasible.
 In joint work with Richard Bird [4], I have been
constructing just such an algebra, for the purpose of
classifying common solution methods in
combinatorial optimisation, such as dynamic
programming, greedy algorithms and branch-and-
bound. One starts with a generic problem, like that
described in Section 2, expressed as a program
itself. The aim is then to find conditions under
which the inefficient but clear program can be
rewritten (through a series of algebraic
manipulations) to an efficient program. Such an
approach to program derivation and classification
was pioneered by Darlington [8,9,13], who
illustrated its use in the area of sorting algorithms.
 There is a problem, however, in applying this
strategy to optimisation problems. More often than

not, the specification is indeterminate, because there
may be several solutions that realise the same
optimal value. It follows that any functional
program embodies a decision as to which of these
equally acceptable solutions is returned. That very
early design decision might then preclude the
synthesis of an efficient algorithm. To keep our
options open, the initial problem statement should
specify a relation between input and output, say P.
The programmer's task is then to find a total
function f so that

f ⊆ P .
Because total functions are just a special kind of
relation, it follows that in our algebraic
manipulations we wish to manipulate relational
expressions, as a generalisation of functional ones.
 The idea of reasoning about programs in terms of
relations is an old one ([4] describes its history, and
cites references). However, we cannot immediately
use those works to realise Backus’ vision, because
we also wish to profit by the benefits of functional
programming, in particular the treatment of
functions as first-class values, that can be passed as
arguments to other programs. Fortunately, the view
of relations offered by category theory allows one to
generalise all the important operations from
functional programming to relations in a canonical
manner.
 These are the twin ingredients of the algebra of
programming that Richard Bird and myself have
constructed: the calculus of relations, and the use of
category theory to generalise important operations
from functional programming to relations. We have
used it to identify and formalise a number of
algorithmic paradigms, in particular two views of
dynamic programming. One of these was informally
explained in this paper; an alternate view of
dynamic programming is somewhat more general,
but more difficult to implement directly as a
software component.
 It would go beyond the scope of this paper to
give a full introduction to all the necessary
terminology of this algebraic approach. Instead, we
shall attempt to give the reader an impression of its
nature by phrasing the generic problem that is the
subject of this paper in terms of the calculus.

A relation is a set of pairs. General relations are
written with capital letters, and functions have
lower-case identifiers. We shall often read relations
as non-deterministic mappings, which take an input
on the right and produce an output on the left. For
example,

a P b

says that a is one possible result when P is applied
to b. Relational composition is written as an infix
dot, and it is defined by

a (P ⋅ Q) c
=
∃ b : a P b ∧ b Q c .

In the special case that P and Q are functions, this
coincides with the usual definition of function
composition.
 We have chosen to view relations as sets of
pairs, but one could also view them as set-valued
functions. That is, given a relation R, the
corresponding set-valued function is written ΛR:
 ΛR (b) = { a | a R b } .

 Using the notation introduced above, our generic
problem can be formulated as follows:

Sdp = min R ⋅ filter p ⋅ gen op1 op2 .
Here R is a preorder, p is a function returning a
boolean result, and op1 and op2 are binary functions.
The relation min R relates a set to its minimum
elements:
 a (min R) x

=
a ∈ x ∧ (∀ b ∈ x : a R b) .

The function (filter p) removes all infeasible
elements from a set:

filter p x = { a | a ∈ x ∧ p a } .
It remains to specify the decision process that takes
a list of input items, and returns a set of candidate
solutions. We shall do so through the function foldl,
which is very commonly used in functional
programming. It takes a function of two arguments,
a seed value and a list, and it returns the left-to-right
sum of the list, as shown in

foldl (⊕) e [a1, a2, ..., an]
=
((e ⊕ a1) ⊕ a2) ⊕ an .

This is where the category theory comes in: it tells
us that there is a canonical generalisation of foldl
where (⊕) is a general relation and not just a
function. Furthermore, that canonical generalisation
satisfies the same algebraic properties as its
functional counterpart. In this particular example, it
is easy to see what the canonical generalisation is.
At each step, we apply the nondeterministic
mapping (⊕), effectively making a choice at each
step of the iteration. This suggests how we can
define our decision process:

gen op1 op2

=
Λ (foldl (op1 ∪ op2) e) .

The programmer’s task is to turn this specification
into a program, using the algebraic properties of the
operators involved. The details of this calculation
can be found in Chapter 8 of [4].

6 Related work
The generic algorithm presented in this paper owes
much to the pioneering efforts of others. In
particular, it was inspired by the seminal paper on
sequential decision processes by Karp and Held
[20]. Our view of dynamic programming is also
heavily influenced by the work of Helman [18,19].
Helman actually states a program scheme that is
even more general than that considered here; it is
however not clear to us how that scheme can be
efficiently implemented as a software component.
 Many specific algorithms have elements in
common with our generic program. We already
noted that the idea of merging and squeezing was
borrowed from the work of Ahrens and Finke [1].
The use of dominance criteria to speed up naive
dynamic programming algorithms has been
investigated in the algorithm design community
[15,16,30]. Some of these efforts have focussed on a
generic problem that is less general than the one in
this paper, namely the least weight subsequence
problem [19].
 In programming methodology, our work is very
much akin to that of Smith [27,28]. Smith’s notion
of problem reduction generators is quite similar to
the generic algorithm presented here. However,
Smith does not state a generic algorithm: instead, he
seeks to express his result as a meta-program, that
given a specification, will produce an efficient
implementation of a dynamic programming
algorithm.
 There is a wealth of work in programming
methods and language research on efficiently
implementing recursion equations [10,26]. This
requires the programmer to first express a solution
as a recursive program (the 'functional equations' of
dynamic programming), which gets subsequently
optimised (through some form of tabulation) to
efficient iterative code. The most recent example of
such work is that of Liu [21], who has achieved a
high degree of automation. As explained before, we
wish to model the whole process of dynamic
programming, and not merely the tabulation phase.

6 Acknowledgements
I would like to thank S.A. Belbas for the invitation
to present this work at CSCC '99. Richard Bird
suggested several improvements over an early draft.

References:
[1] J.H. Ahrens and G. Finke, Merging and sorting

applied to the 0-1 knapsack problem, Operations
Research, Vol. 23, No. 6, 1975, pp. 1099-1109.

[2] J. Backus, Can programming be liberated from
the Von Neumann style? A functional style and
its algebra of programs, Communications of the
ACM, Vol. 21, 1981, pp. 613-641.

[3] R.S. Bird, Tabulation techniques for recursive
programs, Computing Surveys, Vol. 12, No. 4,
1980, pp. 403-417.

[4] R.S. Bird and O. de Moor, Algebra of
programming, Prentice Hall, 1997.

[5] R.S. Bird, Introduction to Functional
Programming in Haskell, Prentice Hall, 1998.

[6] P. Bonzon, Necessary and sufficient conditions
for dynamic programming of combinatorial type,
Journal of the ACM, Vol. 17, No. 4, 1970, pp.
675-682.

[7] E.A. Boiten, Improving recursive functions by
inverting the order of evaluation, Science of
Computer Programming, Vol. 18, No. 2, 1992,
pp. 675-682.

[8] R.M. Burstall and J. Darlington, A
transformation system for developing recursive
programs, Journal of the ACM, Vol. 24, No. 1,
1977, pp. 675-682.

[9] K.L. Clark and J. Darlington, Algorithm
classification through synthesis, Computer
Journal, Vol. 23, No. 1, 1980, pp. 61-65.

[10] N.H. Cohen, Characterization and elimination
of redundancy in recursive programs, In: Procs.
Principles of Programming Languages, 1979,
pp. 143-157.

[11] T.H. Cormen, C.E. Leiserson and R.L. Rivest,
Introduction to Algorithms, MIT Press, 1990.

[12] S. Curtis, A relational approach to
optimization problems, D.Phil. thesis,
Computing Laboratory, Oxford, UK, 1996.

[13] J. Darlington, A synthesis of several sorting
algorithms. Acta Informatica, Vol. 11, No. 1,
1978, pp. 1-30.

[14] E.V. Denardo, Dynamic Programming: Models
and Applications, Prentice-Hall, 1982.

[15] D. Eppstein, Z. Galil, R. Giancarlo, and G.F.
Italiano, Sparse dynamic programming II:
Convex and concave cost functions. Journal of
the ACM, Vol. 39, No. 3, 1992, pp. 546-567.

[16] Z. Galil and R. Giancarlo, Speeding up
dynamic programming with applications to
molecular biology, Theoretical Computer
Science, Vol. 64, 1989, pp. 107-118.

[17] P. Helman and A. Rosenthal, A comprehensive
model of dynamic programming, SIAM Journal
on Algebraic and Discrete Methods, Vol. 6, No.
2, 1985, pp. 319-334.

[18] P. Helman, A common schema for dynamic
programming and branch-and-bound algorithms,
Journal of the ACM, Vol. 36, No. 1, 1989, pp.
97-128.

[19] D.S. Hirschberg and L.L. Larmore, The least
weight subsequence problem, SIAM Journal of
Computing, Vol. 16, No. 4, 1987, pp. 628-638.

[20] R.M. Karp and M. Held, Finite-state processes
and dynamic programming, SIAM Journal on
Applied Mathematics, Vol. 15, No. 3, 1967, pp.
693-718.

[21] Y. A. Liu and S. D. Stoller. Dynamic
programming via static incrementalization. In
Proceedings of the 8th European Symposium on
Programming, Amsterdam, The Netherlands,
March 1999. Springer-Verlag.

[22] S. Martello and P. Toth, Knapsack Problems:
Algorithms and Computer Implementations,
Wiley 1990.

[23] L.G. Mitten, Composition principles for
synthesis of optimal multistage processes,
Operations Research, Vol. 12, 1964, pp. 610-
619.

[24] O. de Moor. A generic program for sequential
decision processes. In PLILP'95, LNCS 982, 1-
23.

[25] J. Nievergelt. An introduction to geometric
computing: from algorithms to software. Ch 1, in
M. van Kreveld et al. (eds.), Algorithmic
Foundations of Geographic Information
Systems, LNCS 1340, Springer, 1997.

[26] A. Pettorossi, Methodologies for
transformations and memoing in applicative
languages, PhD. Thesis CST-29-84, University
of Edinburgh, Scotland, 1984.

[27] D.R. Smith and M.R. Lowry, Algorithm
theories and design tactics, Science of Computer
Programming, Vol. 14, Nos. 2-3, 1990, pp. 305-
321.

[28] D.R. Smith, Structure and design of problem
reduction generators, in: B. Moeller (ed.),
Constructing Programs from Specifications,
North-Holland 1991, pp. 91-124.

[29] M. Sniedovich, A new look at Bellman’s
principle of optimality, Journal of Optimization
Theory and Applications, Vol. 49, No. 1, 1986,
pp. 161-176.

[30] F.F. Yao, Speed-up in dynamic programming,
SIAM Journal on Algebraic and Discrete
Methods, Vol. 3, No. 4, 1982, pp. 532-540.

