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Abstract .
A procedure for synthesizing fast algorithms with minimal estimates of multiplicative complexity is described.
Their application to problems of optimal discrete control of dynamic objects is illustrated using the Diophantine
polynomial equations.
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1. Introduction

The application of the method of polynomial equations is described in [1]-[10] for some problems of optimal
discrete control. The theory of polynomial equations is a mathematical tool synthesizing control systems for
processes that are tractable analytically by the differential calculus [2]. Stated differently, if controlled objects are
describable by differential equations, then the controllers are describable by polynomial equations.

The present paper proposes a procedure for fast computational algorithms with minimal estimates of
multiplicative complexity intended for solving polynomial equations in problems of optimal control.

2. Method of polynomial equations in problems of synthesizing discrete control systems

The transfer functions of linear dynamic systems (LDS) H(z)=A(z)/B(z ) are regular rational functions of z,
that is, degH(z) < 0. The correctness of H(z) follows from the fact that the transitions of physical LDSs are
described by ordinary nongeneralized time functions [2], [3] which leads to the condition p > q, where p=deg
B(z ) and q'= degA(z ) are the degrees of polynomials B(z ) and A(z) , respectively.

Computerized linear controllers also are described by discrete transfer functions (programs) W(z ) in the form
of rational functions W(z) = A'(z)/B'(z) . Unlike the discrete transfer function of LDS, W(z ) can be irregular, that is,
deg W(z) >0  or < 0 [2]. The following constraint is imposed on W(z ) from the point of view of the physical
realizability of a discrete controller:

de f W(z )  0,  (1)

where de f W(z ) is the defect of polynomial W(z ) (the number of zeros at the point z=0).
The type of automatic control system (direct control, parallel action, feedback, combined, etc.) depends on

the method of connecting the controlled object to the controller [1]-[10]. A certain type of dependence of the
system transfer function H(z) on the transfer functions of the controlled object G(z) and controller W(z ) (denoted
by H(z) = H[G(z), W(z)] ) corresponds to each type of control systems.
The choice of controller programs W(z ) for synthesizing control systems for a given function G(z) is limited by the
following conditions [2]:

 the controller must be physically realizable, that is, its transfer, function W(z ) must satisfy relationship
(1) and

 the synthesized system of equations must be operable, that is, its transfer function H(z) must satisfy the
analytical conditions of operability

(H(z))-=0; (2a)
                                                                                                   ( H(z))-=0;              (2b)

( 2H(z))-=0,…; (2c)



where (H(z))_ is the function obtained by separating the rational function H(z)=(H(z))-+(H(z))+ so that the poles
of left-hand side (H(z))_ are in the domain C-={ z  < 1  z  C} and those of the right-hand side (H(z))+ are in

C+={ z  > 1  z  C} and H(z)=
n

n
n zh  is a variation of the rational function defined by the Laurent power

series H(z)=
n

n
n zh . Condition (2a) amounts to the condition of stability of the automatic control system,

and conditions (2b) and (2c) amount to the conditions of roughness in the sense of A. A. Andronov [2]. For the
synthesized system to be operable, both the stability and roughness conditions must be satisfied.

Using conditions (1) and (2a)-(2c), L. N. Volgin [2] defined the classes of admissible functions H(z) for
various control systems.

If, for a suitable choice of W(z), a system can be driven to the required state by finite control actions in a
finite time [2], [11], then it is referred to as a practically controllable system in the sense of R. Kalman. Similarly,
if a system can be driven to the zero state by finite control actions in a finite time [2], then it is referred to as a
practically invariant system. If a system Y(z)=H(z)X(z) is practically controllable, then its complementary system
E(z)=(1-H(z))X(z)=X(z)-Y(z) is practically invariant. The image E(z) of the output of the complementary system is
the discrepancy between the input and output of the original practically controllable system X(z)-Y(z). Since
processes of finite duration have images in form of polynomials in z, the system is practically controllable if the
image of the output of its complementary system can be reduced to a polynomial in z.

Since the control action U(z) is related to the output of the controlled object Y(z)=G(z)U(z), where
G(z)=P(z)/Q(z) is the transfer function of the object, the relationship between the discrepancy E(z), control U(z),
and desired state of the object X(z) is representable as follows:

P(z)U(z)+Q(z)E(z)=Q(z)X(z).  (3)

To satisfy the condition of practical controllability, U(z) and E(z) must be polynomials; if U(z) and E(z)
are indefinite power series, then either infinitely large efforts or an infinite time are required to attain the desired
state. Thus, since P(z), Q(z), U(z), and E(z) are polynomials in z, the left-hand side and, consequently, the right-
hand side of Eq. (3) are polynomials. Therefore, the object states that are admissible in terms of practical
controllability have images X(z)=A(z)/Q(z), where A(z) is an arbitrary polynomial [2]. As follows from (3), for the
admissible states of an object in a practically controllable system the polynomials U(z) and E(z) are related by the
polynomial Diophantine equation

P(z)U(z)+Q(z)E(z)=A(z).  (4)

Equation (4) has a solution with respect to the polynomials U(z) and E(z) if the GCD of (P(z), Q(z))=1,
that is, if the polynomials P(z) and Q(z) are relatively prime.

Since polynomials P(z), Q(z), and A(z) are known, all solutions of the polynomial equation (4) are
expressed in terms of its particular solution {U'(z), E'(z)} as

U(z)=U'(z)+Q(z)S(z), E(z)=E'(z)-P(z)S(z),  (5)

where S(z) is an arbitrary polynomial. A correct polynomial equation (4) for which       degA(z)<degP(z)+degQ(z)
has among the solutions of (5) a unique minimal solution             {Umin(z), Emin(z)} such that degUmin(z)=degQ(z)-
1, degEmin(z)=degP(z)-1. The minimal solution of (4) with respect to E(z) provides the shortest transient with
duration

tmin = (1+degEmin(z)) t=degP(z) t,
where t is the clock cycle.

3. Relationship between the polynomial equations and generalized KN-convolutions

The optimal equation (4) is equivalent to the congruence
P(z)U(z) = A(z) Mod Q(z)  (6)

(with Mod for the operation of finding the polynomial residues), which is known [7], [12]-[16] to describe the
generalized KN-convolution of the sequences {un} and {pn} if degQ(z)=N and degP(z)=N-1. This fact is not in



conflict with the correctness condition for the transfer function of the controlled object, according to which
degQ(z) > degP(z).

Definition 1. By a generalized KN-convolution of two N-point sequences {xn} and {hn} is meant as N-
point sequence {yn} described in vector and matrix terms

yT = xTZN(h), (7)

where
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m=0, 1,...,N-1, yT=[y0 y1 …  yN-1], x
T=[x0  x1 …  xN-1], h

T=[h0   h1 … hN-1],
In polynomial terms, the generalized KN-convolution (7) has the following form [13], [14]:

Y(z)  H(z)X(z) Mod q(z), (8)

where Y(z)=
1N

0n

n
n zy , H(z)=

1N

0n

n
n zh , X(z)=

1N

0n

n
n zx , q(z) = det (KN - zEN) = (-1)N (zN - q1z

N-1 -...- qN-1z - qN).

An insight into the values involved in (8) can be gained by comparing (6) and (8):
• the image U(z) of control action {un} of finite duration degU(z)+1=N applied to the object corresponds to

the polynomial X(z),
 • the numerator P(z) of the transfer function G(z) of the controlled object corresponds to the polynomial

H(z),
• the denominator Q(z) of the transfer function G(z) of the controlled object corresponds to the polynomial

modulo q(z) (the characteristic polynomial of the KN-shift operator), and
• the numerator A(z) of the image of the desired state of the object corresponds to the polynomial Y(z).
Congruence (8) describes a model of a KN-stationary (KN-invariant) LDS [7], [13]. If a finite-duration

control action {un} is fed into its input (subject to the condition that the impulse response {hn} is a sequence of
coefficients of the numerator P(z) of the transfer function of a physical object), then the given KN-stationary LDS
outputs the result of generalized KN-convolution, that is, a finite-duration process characterizing the stale of this
object. The polynomial equation corresponding to (8) is written as

H(z)X(z)+q(z)p(z)=Y(z),  (9)

where q(z) is the characteristic polynomial of the KN-shift operator and H(z), X(z), and Y(z) are polynomial
representations, respectively, of the impulse {hn}, input sequence {xn}, and output sequence {yn}. Since the
polynomials H(z) and X(z) and q(z) and p(z) in (9) are interchangeable, the polynomial p(z) has the meaning of a
polynomial modulo [10].

To solve the polynomial equation (9) with respect to H(z) and q(z), H(z) and p(z), and X(z) and p(z), it is
necessary that the corresponding conditions be satisfied: GCD of (X(z),p(z))=1, GCD of (X(z), q(z))=1, GCD of
(H(z), p(z))=1 or GCD of ((H(z), q(z))=1. We note that the condition of relative primality of the polynomials
amounts to the Kalman controllability conditions.

Proposition 1. The condition of relative primality of polynomials H(z) and q(z) for solving polynomial
equation (9) with respect to the polynomials X(z) and p(z) amounts to the condition of linear independence of the
row vectors of the operator of KN-stationary LDS: hT, hTKN

1, hTKN
2,…, hTKN

N-1, where hT consists of the
coefficients of polynomial H(z) and KN is the companion matrix of polynomial q(z).

The proof was given in [10]. According to Proposition I, the condition of relative primality of polynomials
X(z) and p(z) for solving (9) with respect to H(z) and q(z) implies that the row vectors xT, xTKN

1, ,…, xTKN'
N'-1are

linearly independent, where N'=degp(z), and so on.
In view of the fact the Kalman conditions of practical controllability require that the column vectors b,

(KN
1)Tb,...,(KN

N-1)Tb (where b is the state vector of the system under study [11]) be linearly independent, they are,



by Proposition 1, equivalent to the condition of relative primality of polynomial B(z)=
1N

0n

n
n zb  and the

characteristic polynomial q(z) of KN. On the other hand, relative primality of the polynomials in (3) - the
numerator and denominator in the transfer function of the object - is a necessary condition of practical
controllability of the system; it results in the shortest transient time.

It follows from the foregoing that in problems of synthesizing discrete control systems by polynomial
equations one has to compute repeatedly the products of polynomials with respect to an arbitrary polynomial
modulo, that is, generalized KN-convolutions. Therefore, it is of interest to establish the minimal estimate of
multiplicative complexity of the generalized KN-convolution    [14]-[16].

4. Estimates of minimal multiplicative complexity of reduction modulo an arbitrary polynomial and of
generalized KN-convolutions

We assume that the elements q1, ..., qN of matrix KN do not belong to   V, where  is a subfield of the
constants of field V in the sense of Winograd [17], which means that the multiplications qnxn (qn, xn  V) cannot
be regarded as trivial. We consider the field in which the characteristic polynomial q(z) is decomposable into
linear factors as V, for example V=C is a field of complex numbers.

In view of the polynomial treatment of generalized KN-convolution (8), we must assess the computations for
reduction with respect to an arbitrary polynomial modulo q(z) whose coefficients do not belong to the subfield of
constants   V. We present here only the main results, because this estimate was obtained in [14]-[16].

Lemma 1 (on estimation of the number of multiplications required for computing the reduction modulo an
arbitrary polynomial). A polynomial A(z) over a field V of degree degA(z)=L can be reduced modulo a fixed
polynomial q(z) over V of degree degq(z)=N, where N is ent [L/2], that is, N=L/2 for even L and N=(L±1)/2 for
odd L, in 2L multiplications.
          Lemma 2.  The reduction of a polynomial A(z) over a field V of degree deg A(z)=L modulo a fixed
polynomial q(z) over V of degree deg q(z)=N where N<L and 2N L can be executed in 3L—2N multiplications.
          Theorem 1. The number of multiplications for computing a generalized KN-convolution is 6N-7, that is,
0(6N) if all coefficients of the characteristic polynomial q(z) of the KN-shift matrix operator have nontrivial
coefficients over the field V.

5. Fast algorithms of generalized KN-convolution for dynamic problems of optimal control

We show, using by way of example minimization of the total quadratic error in discrete control systems,
how the synthesized algorithms of generalized KN-convolutions can be applied to some problems of optimal
control [10].

Let us consider a discrete direct-control system with an infinite transient {en}. To optimize it, we minimize

the transient energy described by the functional J=
0n

2
ne  with en  0 for n  . The value J is called the total

quadratic error [2], [3]. By the Parseval theorem, the equality

1j    ,(z)dz/zÊE(z)
j2

1
e

0n 1z

2
n ,  (10)

where E(z)=
0n

n
n ze  and (z)Ê =E(z-1) is an inverted function, is valid for the z-transformation. Alternatively, in

the space of Laurent power series representing the rational functions   H(z) =
n

n
n zh  in a ring containing a loop

z =1, one can assign to each power series a constant term h0 = ct H(z):



 H(z)dz/z  h
1z

0 ,  (11)

where ct stands for a constant term.
Denoting H(z)=E(z)E(z-1) and taking into consideration (10) and (11), we write the criterion for the total

error as [2]

(z)ÊctE(z)J .  (12)

Let us consider a direct-control system assuming that we are given the process of its motion
X(z)=A(z)/B(z), degA(z)<degB(z) and the transfer function of the controlled object  G(z)=P(z)/Q+(z) with
B(z)=B0(z)V(z) and Q+(z)=Q0

+(z)V(z), where V(z)=GCD(B(z),Q+(z)). To minimize the total quadratic error (12),
we seek a control of the object in form [2]

U(z) = Q0
+(z) (z)/(B0(z)P

+(z) (z)P - ),  (13)

where (z)P -  is a polynomial with an inverse order of coefficients as compared with the original polynomial

(z)P  and (z) is a polynomial to be defined below. In view of (13), the error image is

E(z)=X(z)-G(z)U(z)=(A(z) (z)P - -P-(z) (z))/(B(z) (z)P - ).
If we form the polynomial equation

P-(z) (z)+B(z) Ï(z)=A(z) (z)P - ,  (14)
then the error image is described by

E(z)= Ï(z)/ (z)P - .  (15)

The minimal solution of polynomial equation (14) with respect to Ï (z) amounts to computing the
generalized KN-convolution in polynomial form [10]

Ï min(z)=B-1(z)[A(z) (z)P - ]Mod P -(z)  (16)

if deg (z)P - =N. The product of polynomials A(z) (z)P -  is computed using the schemes for computation of the
linear convolutions (LCs) (for example, by means of algorithms for real-valued fast Fourier transforms [18]-[20]).
The inverse polynomial B -1(z) in the ring R[z]/(P -(z)) is determined by solving congruence B -1(z)B(z) 1ModP -(z)

by the algorithms for computing LCs [20]. According to (16), Ïm in(z) is computed after determining A(z) (z)P -

and  B--1(z) by the algorithm of generalized KN-convolution, and the degree of the polynomial is deg
Ï min(z)=degP-(z)-1=N-1.

To obtain an optimal control U(z), one must find a polynomial (z) in conformity with (13) for which
polynomial equation (14) is reduced to a polynomial variant of the generalized KN'-convolution [10]:

(z) (P-(z))-1A(z) (z)P - ModB(z)

where N'=degB(z).                                                                                                                                        (17)

6. Conclusion
The present paper demonstrates that since the minimal solution of polynomial equations is equivalent to the
solution of generalized KN-convolutions, discrete control systems can be synthesized from an input-output
representation by means of the theory of KN-stationary LDSs [7]. As a result, the developed procedures for
computing the polynomial residues and generalized KN-convolutions enable one to synthesize fast control
algorithms for discrete dynamic objects.

Furthermore, it follows from the method of state space [11] that the controllable (identifiable) states of a
stationary LDS make up a KN-invariant subspace (cyclic vector subspace). In view of this fact and the results of
Sec. 3 (Proposition 1, in particular), it is likely that the model of KN-stationary systems "bridges" the methods of



input-output representations and of state space. A substantiation of this conclusion is the subject matter of further
studies.

References

1. Polynomial Methods in Optimal Control and Filtering / Ed. by K.J. Hunt. Herts.: IEE Control Eng., Series
no. 49, 1973.

2. L. N. Volgin, Optimal Discrete Control of Dynamic Systems [in Russian], Nauka, Moscow (1986).
3. L. N. Volgin, "Diophantine polynomial calculus and its application to the mathematical problems of control

theory," Avtomatika, No. 1, 43-52 (1987).
4. V. Kuèera, "Algebraic approach to discrete stochastic control," Kybernetika, II, No. 2, 114-147 (1975).
5. V. Kuèera, Discrete Linear Control: The Polynomial Equation Approach, Academia, Prague (1979).
6. P. D. Krut'ko, "Polynomial equations and inverse problems of dynamics of controllable systems," Izv. Akad.

Nauk SSSR, Tekh. Kibern., No. 1, 125-133 (1986).
7. A. M. Krot, Discrete Models of Dynamic Systems Based on Polynomial Algebra [in Russian], Navuka i

Tekhnika, Minsk (1990).
8. F. A. Aliev, B. A. Bordyug, and V. B. Larin, H2-optimization and the Method of State Space in the Problem

of Synthesizing Optimal Controllers [in Russian], Elm, Baku (1991).
9. K. J. Hunt, "Progress in polynomial optimization," in: Proc. Int. Conf. "Control-91" (1991), pp. 587-591.
10. A. M. Krot, "Synthesizing fast algorithms for optimal discrete control by the method of polynomial

equations", Automation and Remote Control, 57, No. 8, 1079-1090 (1996).
11. R. E. Kalman, P. L. Falb, and M. A. Arbib, Topics in Mathematical System Theory, McCraw-Hill, New

York (1969).
12. A. M. Krot, "On a class of operators of generalized shift in the theory of signals and systems," Soviet J.

Comm. Tech. Electron., 31, No. 12, 110-118 (1986) (a translation of Radiotekhn. Elektron., 31, No. 8,
1563-1570 (1986)).

13. A. M. Krot, "Analysis of linear dynamic systems by polynomial transformations of numerical sequences,"
Soviet J. Comm. Tech. Electron., 34, No. 1, 6-13 (1989) (a translation of Radlolekhn. Etektron., 33, No. 7,
1453-1466 (1988)).

14. A. M. Krot, "On the multiplicative complexity of bilinear forms for which the Vandermonde
transformation is an eigen-transformation," Sov. Math. Dokl., 42, No. 3, 646-650 (a translation of Dokl.
Akad. Nauk SSSR, 314, No. 6, 1312-1315 (1990)).

15. A. M. Krot, "The multiplicative complexity of the reduction a modulo arbitrary polynomial, generalized
KN-convolution and fast Vandermonde transform", Proc. 13th Intern. Conf. on Digital Signal Proc.,
(DSP'97), vol. 2, Santorini, Greece, 893-897 (1997).

16. A. M. Krot “Fast reduction a modulo polynomial and fast Vandemonde transform based on fast Fourier
transform algorithms”.SPIE’s 12th  Annual International Symposium on Aerospace/Defense Sensing,
Simulation, and Controls. (AeroSense),13-17 April 1998, Orlando, Florida, USA, Vol. 3374, 505-514.
(1998).

17. S. Winograd, "Some bilinear forms whose multiplicative complexity depends on the field of constants,"
Math. Syst. Th., No. 10, 169-180 (1977).

18. A. M. Krot and E. B. Minervina, "Algorithms of fast Fourier transform for real and Hermitian symmetrical
sequences," Soviet J. Comm. Tech. Electron., 34, No. 12, 122-129 (1989) (a translation of Radiotekhn.
Elektron., 34, No. 2, 369-376 (1989)).

19. A. M. Krot, "Method of eigen-transformations in different fields for computing cyclic convolutions and
discrete Fourier transform," U.S.S.R. Comput. Math. and Math Phys., 29, No. 3, 23-34 (1989) (a translation
of Zh. Vychisl. Mat. Mat. Fiz.,29, No. 5, 675-692 (1989)).

20. A. M. Krot and E. B. Minervina, Fast Algorithms and Programs for Digital Spectral Processing of Signals
            and Images [in Russian], Navuka i Tekhnika, Minsk (1995).


