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1. Introduction

The gpplication of the method of polynomid equationsis described in[1]-[10] for some problems of optimal
discrete contral. The theory of polynomia equations is a mathemdticd tool syntheszing control systems for
processes that are tractable andyticaly by the differentid cdculus[2]. Stated differently, if controlled objects are
describable by differential equations, then the controllers are describable by polynomid eguetions.

The presant paper proposes a procedure for fagt computationd dgorithms with minima estimates of
multiplicative complexity intended for solving polynomia equationsin problems of optima contral.

2. Method of polynomial equations in problems of synthesizing discrete control systems

The trandfer functions of linear dynamic sysems (LDS) H(z)=A(z)/B(z )are regular rationd functions of z,
thet is degH(z) < O0The correctness of H(z) fallows from the fact thet the trangtions of physcd LDSs are
described by ordinary nongenerdized time functions [2], [3] which leads to the condition p > ¢, where p=deg
B(z )and g'=degA(z grethedegressof polynomiasB(z Jand A(z) respectively.

Computerized linear controllers aso are described by discrete trandfer functions (programs) W(z )in theform
of rationd functionsW(z) = A'(2)/B'(z) Unlikethe discrete trandfer function of LDS, W(z )can beirregular, that is
deg W(z) >0 or <0 [2]. The following condraint is imposed on W(z ) from the point of view of the physca
redizability of adiscrete controller:

de W(z )0, Q)

wherede fW(z )isthe defect of polynomid W(z )(the number of zeros at the point z=0).

Thetype of automatic control system (direct control, parald action, feedback, combined, etc.) dependson
the method of connecting the controlled object to the controller [1]-[10]. A certain type of dependence of the
sysem trander function H(z) on the trandfer functions of the controlled object G(z ) and controller W(z ) (denoted
by H(z) = H[G(z), W(z)] yorrespondsto each type of control sysems
Thechoice of controller programsW(z )for synthesizing control systemsfor agiven function G(z )islimited by the
following conditions[2]:

o the contraller must be physcaly redizable, thet is its trander, function W(z ) mugt satidfy rdationship

Dad
e the syntheszed sysem of equations must be operable, that is its trandfer function H(z) mugt iy the
andyticd conditions of operability
(H@2)=0; (2a)
(H(@2)-=0; ()

(FH@)-=0....; (20)



where (H(2)._is the fundtion obtained by separating the rationdl function HZ)=(H(2))-+(H()). 0 thet the poles
of left-hand side (H(2))_ arein the domain C-={/z/ < 1/ z e C} and those of the right-hand side (H(2)). are in

C.={l >1/z e Cyand 8H(2)= i sh,z" isavaiaion of the rationa function defined by the Laurent power

N=—

siesH(2)= 26 h,z" . Condition (28) amounts to the condition of stability of the automatic control system,
and conditions (2b) and (2¢) amount to the conditions of roughness in the sense of A. A. Andronov [2]. For the
synthesized sysem to be operable, both the sability and roughness conditions must be stidfied.

Using conditions (1) and (2a)-(2¢), L. N. Vdlgin [2] defined the dasses of admissble functions H(z) for
vaious control sysems.

If, for a suitable choice of W(z), a sysem can be driven to the required sate by finite contral actionsin a
finitetime[2], [11], then it isreferred to as a practicdly contrallable sysem in the sense of R. Kamean. Similarly,
if a sysem can be driven to the zero date by finite contral actions in afinite ime [2], then it is referred to as a
practicaly invariant sysem. If asystem Y(2)=H(2)X(z) is practicdly controllable, then its complementary system
E@)=(1-H@)X@)=X(2)-Y(2) ispracticdly invariant. Theimage E(z) of the output of the complementary sysemis
the discrepancy between the input and output of the origind practicaly controllable system X(z2)-Y(z). Since
processes of finite duraion have images in form of polynomidsin z, the system is practicaly controllable if the
image of the output of its complementary system can be reduced to apolynomid inz.

Since the contral action U(z) is rdaed to the output of the controlled object Y(2)=G(2)U(z), where
G(2=P(2)/Q(2) isthe trandfer function of the object, the rdaionship between the discrepancy E(z), contral U(2),
and desired date of the object X(2) is representable asfollows

P@U@)+Q@)E@)=Q@)X(). &)

To satidy the condition of practical contrallability, U(z) and E(z) mugt be palynomids; if U(z) and E(2)

are indefinite power series, then ather infinitdy large efforts or an infinite time are required to attain the desired

date. Thus, snce P(z2), Q(2), U(2), and E(z) are polynomidsiin z, the left-hand sde and, consequently, the right-

hand sde of Eq. (3) are palynomias Therefore, the object daes that are admissble in terms of precticd

controllability have images X(2)=A(2)/Q(z), where A(z) isan arbitrary polynomid [2]. Asfallows from (3), for the

admissble gates of an object in apracticaly controllable system the polynomias U(z) and E(z) are rdaed by the
polynomia Diophantine equation

P@U@)+Q@E@=AQ). @
Equation (4) has a solution with repect to the polynomias U(z) and E(2) if the GCD of (P(2), Q(2))=1,
that is, if the polynomias P(z) and Q(z) arerddivey prime.
Since palynomids P(2), Q(z), ad A(z) are known, dl solutions of the polynomid equation (4) are
expressed interms of its particular solution {U'(2), E'(2)} as

UQ=U@+Q@)5@), E@=E@-P@)S@ ©
whereS(z) isan arbitrary polynomid. A correct polynomia eguation (4) for which  degA(z)<degP(z)+degQ(2)
has among the solutions of (5) aunique minima solution {Unin(2), Enin(2)} such that degUin(z)=degQ(2)-
1, degEmin(2)=degP(2)-1. The minima solution of (4) with repect to E(z) provides the shortest trangent with
duretion

tmin = (1+degEnin(2)) At=degP(2)At,
where Atisthedock cyde.

3. Relationship between the polynomial equations and generalized Ky-convolutions

Theoptima equetion (4) isequivadent to the congruence

P(2)U(2) = A(z) Mod Q(2) ©
(with Mod for the operation of finding the polynomia residues), which is known [7], [12]-{16] to describe the
generdized Kn-convolution of the sequences {u,} and {p.} if degQ(z2)=N and degP(z)=N-1. This fact is nat in



conflict with the correctness condition for the trandfer function of the controlled object, according to which
degQ(2) > degP(2).

Definition 1. By a generalized Kn-convolution of two N-point sequences {x.} and {h} is meant as N-
point sequence {yn} described in vector and matrix terms

y' =x"Zn(h), ()
where
hTK® 0o 1 07"
h'K} - '
Zn(h)= ...N ’ Ky = 0 1]’
hTKl'\l\l_l Oy Oy 0 Oy

m:O, 1,...N-1, yT:[yOyl . yN-l], XT:[XQ X1... XN.1], hT:[ho h1 e hN—l],
In polynomid terms; the generdized Ky-convolution (7) hasthe following form [13], [14]:
Y(2) =H(2)X(z) Mod q(2), ®

N-1 N-1 N -1
whereY@)=Y'y,z" ,H@)= Y h,z" . X@)= Y x,2",q(2) = det (Kn-zEn) = (1" (@' - ouZ" " -...- Onaz - ).
n=0 n=0 n=0

Anindght into the vduesinvolved in (8) can be gained by comparing (6) and (8):

« theimage U(z) of contral action {u,} of finite duration degU(z)+1=N gpplied to the object correspondsto
the polynomid X(2),

* the numerator P(z) of the trandfer function G(z) of the controlled object corresponds to the polynomid
H(),

» the denominator Q(z) of the trandfer function G(z) of the controlled object corresponds to the polynomid
modulo q(z) (the characteridtic polynomid of the Ky-shift operator), and

« the numerator A(z) of theimage of the desired Sate of the object correspondsto the polynomid Y(2).

Congruence (8) destribes a modd of a Kn-daionary (Ky-invariant) LDS [7], [13)]. If a finite-duration
control action {un} is fed into its input (ubject to the condition thet the impulse response {hy} is a sequence of
codffidents of the numerator P(z) of the trandfer function of aphysicd object), then the given Ky-gationary LDS
outputs the result of generdized Kyn-convolution, that is, a finite-duration process characterizing the sde of this
object. The polynomid eguation corresponding to (8) iswritten as

H@X@+a(2p@)=Y(), ©
where (2) is the characteridic polynomid of the Kn-shift operaior and H(z), X(z), ad Y(z) are polynomid
representations, respectively, of the impulse {hy}, input sequence {Xx,}, and output ssquence {y.}. Since the
polynomias H(z) and X(z) and q(z) and p(z) in (9) are interchangegble, the polynomid p(z) has the meaning of a
polynomia modulo [10].

To solve the polynomid equation (9) with respect to H(z) and q(z), H(z) and p(z), and X(2) ad p(2), it is
necessary thet the corresponding conditions be stisfied: GCD of (X(z),p(2))=1, GCD of (X(2), 9(2))=1, GCD of
(H@), p@)=1 or GCD of ((H(2), q(2))=1. We note thet the condition of rdative primdity of the polynomids
amountsto the Kalman controllgbility conditions

Proposition 1. The condition of rdative primdity of polynomiads H(z) and g(z) for solving polynomid
equation (9) with respect to the polynomias X(z) and p(z) amounts to the condition of linear independence of the
row vectors of the operator of Ky-stationary LDS: h', h'Kyl, h'Kn?..., h'Ky“Y!, where h' consists of the
codffidents of polynomia H(z) and Ky isthe companion matrix of polynomia qg(z).

The proof was given in [10]. According to Proposition I, the condition of relative primdity of polynomias
X(2) and p(z) for solving (9) with respect to H(z) and q(z) impliesthet the row vedtors X', XKy, ..., XKy “are
linearly independent, where N'=degp(z), and so on.

In view of the fact the Kamean conditions of practica contrallability reguire thet the column vectors b,
K)'b,.... (KN b (where b is the state vector of the system under study [11]) be linearly independert, they are,



N-1
by Propostion 1, equivdent to the condition of rdative primdity of polynomid B(z)= anz” ad the
n=0
characterigic polynomid q(z) of Kn. On the other hand, rddive primdity of the polynomids in (3) - the
numerator and denominator in the trander function of the object - is a necessary condition of practicd
controllability of the system; it resultsin the shortest trangent time,

It follows from the foregoing that in problems of syntheszing discrete control systems by polynomid
equations one has to compute repeatedly the products of polynomias with respect to an arbitrary polynomid
modulo, thet is, generdlized Kn-convolutions. Therefore, it is of interest to establish the minimal estimate of
multiplicative complexity of the generdized Ky-convolution  [14]-[16].

4. Estimates of minimal multiplicative complexity of reduction modulo an arbitrary polynomial and of
generalized Ky-convolutions

We assume thet the dements g, ..., gy of matrix Ky do not belong to 2 cV, where Q is a subfidd of the
condants of fidd V in the sense of Winograd [17], which meens that the multiplications g, (Gn, X, € V) cannat
be regarded as trivid. We congder the fidd in which the characteristic polynomid q(z) is decompossble into
linear factors as V, for example V=C isafidd of complex numbers

Inview of the polynomid trestment of generdized Kn-convolution (8), we must assess the computations for
reduction with repect to an arbitrary polynomid modulo q(z) whose coefficients do not belong to the subfid of
condants 2 cV. We present here only the main results, because this etimete was obtained in [14]-[16].

Lemma 1 (on edimation of the number of multiplications required for computing the reduction modulo an
abitrary polynomid). A polynomia A(z) over afidd V of degree degA(z)=L can be reduced modulo a fixed
polynomid q(z) over V of degree degq(z)=N, where N isent [L/2], that is, N=L/2 for even L and N=(L+1)/2 for
oddL, in2L multiplications.

Lemma 2. The reduction of a polynomid A(z) over a fidd V of degree deg A(z)=L modulo a fixed
polynomid q(z) over V of degree deg g(z)=N where N<L and 2N > L can be executed in 3L—2N multiplications,

Theorem 1. The number of multiplications for computing a generdized Ky-convolution is 6N-7, thet is
0(6N) if al coefficients of the characteridtic polynomid q(z) of the Kn-shift metrix operator have nontrivia
coefficdentsover thefidd V.

5. Fast algorithms of generalized Ky-convolution for dynamic problems of optimal control

We show, using by way of example minimization of the totd quadratic error in discrete control systems,
how the synthesized dgorithms of generdized Ky-convolutions can be gpplied to some problems of optimd
control [10].

Let us congder adiscrete direct-control sysem with an infinite trandent {e,}. To optimize it, we minimize

the transient energy described by the functional J=""e? with e;— 0 for n — o< ThevaueJ is called the tota

n=0
quedratic error [2], [3]. By the Parsevd theorem, the equdity
e _ 1 |E@E@dzz, j=-/-1, (10)
n=0 M fa

where E(2)= z e,z" and E(z2) =E(z") isan inverted function, is valid for the z-transformation. Alternatively, in
n=0

the space of Laurent power seriesrepresenting therationd functions H(z) = Zhnz” inaring containing aloop

N=—c<

[z =1, onecan assign to each power seriesacondant term hy = ct H(2):



hy= JH@)dzz |, 1)
|z=1
wherect gandsfor acondant term.
Denating Hz)=E(2)E(z") and teking into consideration (10) and (11), we write the criterion for the totd
eror as[2]

J =CtE(2)E(z). (12)

Let us congder a direct-control sysem assuming that we are given the process of its motion

X(2)=A2)/B(z), degA(z)<degB(z) and the trandfer function of the controlled object G(2)=P(2)/Q*(z) with

B(2)=Bo(2)V(z) and Q" (2)=Qo" (2)V(z), where V(2)=GCD(B(2),Q"(2)). To minimize the total quedratic error (12),
we seek acontral of the object inform[2]

U@ = Q" (2) 62)/Bo@P* @ P (2)), (13
where P (2) is a polynomia with an inverse order of codfficents as compared with the origind polynomid
P(z) and 6(z) isapolynomid to be defined below. In view of (13), the error imageis
E@=X@)-G@U@)=(A@) P "(2)-P(2) €2))/(B(2) P"(2)).
If we form the polynomia equation

P@62+B@) 1(9=AQ P (@), 4
then the error imageis described by

EQ=1@)/P (2). (15)

The minima solution of polynomia equation (14) with repect to 1(z) amounts to computing the
generdized Kn-convolution in polynomid form [10]

Tmin@=B"@[A®) P (2) [Mod P"(2) (16)

if deg P "(z) =N. The product of polynomids A(z) P "(z) is computed using the schemes for computetion of the
linear convalutions (LCs) (for example, by means of dgorithmsfor red-vaued fagt Fourier transforms [18]-{20]).
Theinverse polynomid B™(z) in thering R[z]/(P(2)) is determined by solving congruence B ™(2)B(z)=1ModP ()
by the agorithms for computing LCs [20]. According to (16), T in(2) is computed after determining AZ) P (2)
and B(2) by the dgorithm of generdized Ky-convolution, and the degree of the polynomid is deg
| min(z)=degP-(z)-1=N-1.

To obtain an optima contral U(z), one mudt find a polynomia 6(z) in conformity with (13) for which
polynomia equation (14) isreduced to apolynomid variant of the generdized Kn-convolution [10]:

82)=(P (2))"A() P~ (2) ModB(2)

whereN'=degB(2). 17)

6. Conclusion
The present pagper demondrates that Snce the minima solution of polynomid equtions is equivdent to the
solution of generdized Ky-convolutions, discrete control systems can be synthesized from an input-output
representation by means of the theory of Kn-daionary LDSs [7]. As a result, the developed procedures for
computing the polynomia resdues and generdized Ky-convolutions enable one to synthesize fagt control
agorithmsfor discrete dynamic objects.

Furthermore, it follows from the method of date gpace [11] that the contrallable (identifiable) Sates of a
dationary LDS make up a Kn-invariant subspace (cydlic vector subgpace). In view of this fact and the results of
Sec. 3 (Propastion 1, in particular), it is likdy thet the modd of Kn-dationary sysems "bridges' the methods of



input-output representations and of date space. A subgtantiation of this condusion is the subject matter of further
dudies
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