
Applications of the Exponential Search Tree in Sweep Line Techniques

S. SIOUTAS, A. TSAKALIDIS, J. TSAKNAKIS. V. VASSILIADIS
Department of Computer Engineering and Informatics

University of Patras 2650 0 Patras
GREECE

Abstract: - This paper refers to the «line segment intersection problem» using the sweep line technique. It describes
how the Exponential search trees of Anderson can be used in this dynamic problem and how using this method is
possible to achieve time O((n+s) logn) maintaining the space cost linear. CSCC'99 Proc.pp.2261-2266

Key-words:- Computational Geometry, line segment intersection problem, sweep line technique, exponential search tree.

1. Introduction and Related Work
Consider the problem of reporting the intersections of
n line segments in the plane. This problem is an
excellent vehicle for introducing the powerful technique
of plane sweep (fig. 1). The plane-sweep algorithm
maintains an active list of segments that intersect the
current sweepline, sorted from bottom to top by
intersection point . If two line segments intersect, then
at some point prior to this intersection they must be
consecutive in the sweep list. Thus, we need only test
consecutive pairs in this list for intersection, rather than
testing all O(n²) pairs.

At each step the algorithm advances the sweep line
to the next event: a line segment endpoint or an
intersection point between two segments. Events are
stored in a priority queue by their x-coordinates. After
advancing the sweepline to the next event point, the
algorithm updates the contents of the active list, tests
new consecutive pairs for intersection, and inserts any
newly-discovered events in the priority queue. For
example, in fig.1 the locations of the sweepline are
shown with dashed lines.

Bentley and Ottmann showed that by using plane
sweep it is possible to report all s intersecting pairs of n
line segments in O((n+s)logn) time [8]. If the number of
intersections s is much less the O(n²) worst-case
bound, then this is great savings over a brute-force test
of all pairs. For many years the question of whether this
could be improved to O(nlogn + s) was open , until
Edelsbruner an d Chazelle presented such an algorithm
[9].

fig. 1

This algorithm is shown optimal with respect to
running time because at least Ù(s) time is needed to
report the result, and it can be shown that Ù (nlogn)
time is needed to detect whether there is any
intersection at all. However , their algorithm uses O(n +
s) space. Clarkson and Shor presented a randomised
algorithm with the same excepted running time but
using only O(n) space [10]. The question if there is a
deterministic O(nlogn + s) time and O(n) space
algorithm for reporting line intersections is still an open
problem. Based on [8] we present a very simple
O((n+s) logn) time and O(n) space algorithm using the
Exponential Search tree. The Exponential Search trees
[2] ar e multiway trees that answer efficiently queries in
one-dimensional space. Their combination with a
number of other techniques such as the Fusion
technique [1], van Emde Boas trees [3] and perfect
hashing [4], results in very fast searching structures.

2 Preliminary Data Structures
In this section we will briefly review the data structures
which are used in our solution.

2.1 The Fusion tree
The Fusion tree is a static data structure which permits
O(logN/loglogN) amortised time queries in linear
space. This structure is used to implement a B-tree
where only the upper levels in the tree contain B-tree
nodes, all having the same degree (within a constant
factor). At the lower levels, weight balanced trees are
used. The amortised cost for searches and updates is
O(logN/logd + logd) for any d = O(w1/6). The first term
corresponds to the number of B-tree levels and the
second to the height of the weighted-balanced trees.

The Fusion tree has the following properties:
For any d, d = O(w1/6), a static data structure
containing d keys can be constructed in O(d4) time and
space, such that it supports neighbour queries in O(1)
worst-case time.

The main advantage of the fusion technique is that
we can decide in time O(1) in which subtree to continue
the searching by compressing the k-keys of every B-tree
node using w - bit words.
It’s necessary for the reader to be familiar with the
details of the fusion algorithms of Willard concerning
the costs of insertions and deletions in such a tree in full
dynamic case. So , we refer two very important
Lemmas [5].

LEMMA 1: Consider a B- tree whose internal
nodes have parity between B/8 and B , whose root has
parity between 2 and B , and whose leaves store the
data and all have the same depth. Suppose that
insertions and deletions in such a tree of height h will
have an O(h) cost when no splits or merges occur, and
the costs of splits and merges is bounded by O(Bh).
Then regardless of the details of the structure of the
node v (for example it could be a q-heap), it is possible
to devise an insertion and deletion algorithm for this
tree that runs in amortised time O(h).

Proof sketch: Without loss of generality , we may
assume B>8. Consider the natural B-tree insertion /
deletion algorithm that merges a non-root internal node
v with its sibling w if v’ s parity is less than B/8 , splits
a node into two equal halves whenever its parity
exceeds B (sometimes a merge will immediately trigger
a split), and which makes the child of tree root into the
new root if the preceding operations caused the old
root to have only one child. It is easy to devise an
accounting function that shows there will be only an
amortized number of O(1/B) splits and merges in a
tree of height h (essentially because nodes of height j

will have an amortised frequency of O[(8/B)j+1] of
splitting and merging). Hence the split and merge
operations will have an O(h) amortised cost. This
shows that the total cost of insertions and deletion is
also O(h), since splitting and merging are the only
potentially costly operations. (Lemma 1 also holds if
splits and merges have a cost proportional to the
number of leaf descendants (or indeed an
O(Bh Polynomial(j)) cost for a node of height j in a
tree of height h), but the latter two are not relevant to
our present discussion. Multi _branching B-trees with
such properties were presented in [6].)

LEMMA 2: For sets of arbitrary cardinality M, pre-
computed tables of size o(N) also make it possible to
develop variants of q*-heaps that have a worst-case
time O(1+logM/loglogN) for insertion, deletion and
retrieval operations, i.e. the data structure consists of a
B-tree storing M records with a branching factor
B=(logN)1/5 whose internal nodes are q-heaps.

Proof sketch: The previous literature has illustrated
many examples of amortised optimisation algorithms
which can also guarantee worst-case time , if their
procedures are made somewhat more elaborate. We
will use a similar approach here. Our algorithm will be
in many respects analogous to [7]. The discussion will
therefore be brief, and it may be helpful if the reader
was previously acquainted with [7].

All the data will be stored at the leaf level of our
tree and all leaves will have the same depth, as is
conventional for B-trees. Say an internal node v is
«safe» if its parity lies between B/4 and 3B/4, and it is
«legal» if its parity lies between B/8 and B (in the
special case of the root’s parity, the previous lower
bounds will equal 2). Our insertion/deletion algorithms
will quarantee that each node has legal parity at all
times , and it will attempt to make the parity safe as
often as possible. In particular for fixed constant K>0,
define ALG(K) to be a procedure that executes the
following three steps after the insertion or deletion of a
new leaf node.
1) If a deletion causes the root to have only one son
then the procedure ALG(K) will simply eliminate the
root and make its son the new root
2) If the parity of a node v increases and thereby
becomes unsafe , then the algorithm will correct this
problem by transferring one of the children of v to one
of v’s two adjacent siblings, provided this sibling is not
made unsafe by this movement. If such a movement is
impossible then the algorithm will start an
‘evolutionary split process’ that breaks v into two equal
- sized nodes during the next K update commands
which involve leaves descending from v. (This

evolutionary split operation will be designed to
consume O(B/K) units of CPU time for ‘fixing up v’
during each of these K commands). The parent of v will
view v as one child (rather than as 2) until the split
evolution is completed.
(3) If the parity of a node v decreases and thereby
becomes unsafe , then the algorithm solves this problem
by transferring a child to v from one of its adjacent
siblings provided that this movement does not cause the
sibling to become unsafe. Otherwise , this operation
will merge v with one of its two adjacent siblings by
using a K-step evolutionary process, using O(B/K)
CPU time per operation, analogous to the evolutionary
split. Although v and its sibling will not be technically
fully merged until the end of the K-evolutionary
process, the parent of v will view them as one merged
node at the onset of this evolutionary process, i.e. as
one child rather than two. (The presence of two nodes
temporarily representing an entity that should ideally
form one object does not seriously degrade the
performance because it will increase the time to probe a
node by no more than a constant factor of 2).

The preceding algorithm is very similar in spirit to
[7], and we will therefore give only a brief proof of its
correctness. For all values of K>0 , it is easy to verify
that the procedure ALG(K) will execute insertions and
deletions in time O(h+hB/k) over a tree of height h.
Moreover, if we set say K=B/128 , the algorithm will
assure that the parity of all B-tree nodes will always be
legal (causing the tree to have height h <
O(logM/loglogN), and it will assure that update
operations run in worst-case time O(h). Hence
ALG(B/128) is a worst-case procedure that meets the
claims of Lemma 2.

2.2 The Exponential Search tree
The Exponential Search tree answers queries in one-
dimensional space. It is a multi-way tree where the
degrees of the nodes decrease exponentially down the
tree. Auxiliary information is stored in each node in
order to support efficient searching queries. The
Exponential Search tree has the following properties:
 Its root has degree È(Nl/5).
 The keys of the root are stored in a local data

structure. During a search, the local data structure
is used to determine in which subtree the search is
to be continued.

 The subtrees are exponential search trees of size
È(N4/5).

The local data structure at each node of the tree is a
combination of van Emde Boas trees and perfect

hashing thus achieving O(logwloglogN) worst case cost
for a search.
Anderson, by using an exponential search tree in the
place of B-trees in the Fusion tree structure, avoids the
need for weight-balanced trees at the bottom while at
the same time improves the complexity for large word
sizes. This structure is a significant improvement on
linear space deterministic sorting and searching. On a
unit-cost RAM with word size w, an ordered set of n w-
bit keys (viewed as binary strings or integers) can be
maintained in O(min (logn, logn/logw + loglogn,
logwloglogn)) time per operation, including insert,
delete, member search, and neighbour search. The cost
for searching is worst – case while the cost of updates
is amortised. For range queries, there is an additional
cost of reporting the found keys. As an application, n
keys can be sorted in linear space at a worst-case cost
O(n logn). The best previous method for deterministic
sorting and searching in linear space has been the
fusion trees which supports queries in O(logn/loglogn)
amortised time and sorting in O(nlogn/loglogn) worst –
case time.

3 Algorithm Analysis
Theorem 1: Let L1,...,Ln be a set of n line segments in
the plane. Then the set of all s pairwise intersections
can be computed in time O((n+s) logn) and space
O(n).

Proof: We use plane sweep, i.e. we sweep a vertical
line from left to right across the plane. At any point of
the sweep we divide the set of line segments into three
pairwise disjoint groups: dead, active, and dormant. A
line segment is dead (active, dormant) if exactly two
(one, zero) of its endpoints are to the left of the sweep
line. Thus the active line segments are those which
currently intersect the sweep line and the dormant line
segments have not been encountered yet by the sweep.
For the description of the algorithm we assume that no
line segment is vertical and that no two endpoints or
intersection points have the same x-coordinate. Both
assumptions are made to simplify the exposition. The
reader should have no difficulty to modify the algorithm
such that it works without these assumptions.

The y-structure stores the active line segments
ordered according to the y-coordinate of their
intersection with the sweep line. More precisely, the y-
structure is a Exponential search tree for the set of
active line segments. In our example, line segments
L1,L2,...,L6 are active.

L1

L2

L3

L4

L5

L6

1

2

fig.2

They are stored in that order in the y-structure i.e.
the y-structure is a dictionary for the set of active line
segments. It is obvious that an Exponential search tree
can be used as a dictionary. It supports (at least) the
following operations in sub logarithmic time O(logn).
Find(p) given point p on the sweep

line, find the interval (on the
sweep line) containing p

Insert(L) insert line segment L into the
y-structure
Delete(L) delete line segment L from the
y-structure
Pred(L), Succ(L) find the immediate predecessor

(successor) of line segment L
in the y-structure

Interchange(L,L')
interchange adjacent line
segments L and L' in the y-
structure.

It is worthwhile to observe that the cost of operations
Pred, Succ and Interchange can be reduced to O(1)
under the following assumptions. First, the procedures
are given a pointer to the leaves representing line
segment L as an argument and second, additional
pointers augment the tree structure. For the Pred and
Succ operations we need pointers to the adjacent leaves
and for the Interchange operation we need a pointer to
the least common ancestor of leaves L and L'. Note that
the least common ancestor of leaves L and L' contains
the information which discriminates between L and L'
in the tree search. Additional pointers do not increase
the running time of Inserts or Deletes.

We describe the x-structure next. It contains all
endpoints of line segments (dormant or active) which
are to the right of the sweep line. Furthermore, it

contains some of the intersections of line segments to
the right of the sweep line. Note that it cannot contain
all of them because the sweep has not even seen
dormant line segments yet. The points in the x-structure
are sorted according to their x-coordinate, so for the x-
structure we use an other one Exponential search tree.
For the correctness of the algorithm it is important that
the x-structure always contains the point of
intersections active line segments, which is closest to
the sweep line. We achieve this goal by maintaining the
following invariant.

If Li and Lj are active line segments, are adjacent in
the y-structure, and intersect to the right of the sweep
line then their intersection is contained in the x-
structure.

In our example, point 1 must be in the x-structure
and point 2 may be in the x-structure. In the space-
efficient version of the algorithm below point 2 is not in
the x-structure. We have the following consequence of
the invariant above.

Lemma 3: Let p be the intersection of active line
segments Li and Lj. If there is no endpoint of a line
segment and no other point of intersection in the
vertical strip defined by the sweep line and p then p is
stored in the x-structure.

Proof: If p is not adjacent in the x-structure then Li

and Lj are not adjacent in the y-structure. Hence there
must be active line segment L which is between Li and
Lj in the y-structure. Since L’s right endpoint is not to
the left of p either (L, Li) or (L, Lj) is to the left of
p, a contradiction.

fig. 3

Finally, we maintain the following invariant about the
output. All intersections of line segments, which are to
the left of the sweep line, have been reported.

We are now in a position to give the details of the
algorithm.
(1) y-structure ß

pLj

Li

L

(2) x-structure ß the 2n endpoints of the line
segments sorted by x-coordinate

(3) while x-structure
(4) do let p be a point with minimal x-

coordinate in the x-structure
(5) delete p from the x-structure
(6) if p is a left endpoint of some segment Lj

then
(7) search for p in the y-structure and insert Lj into

the y-structure
(8) let Li, Lk be the two neighbours of Lj in the y-

structure;
insert (Li, Lj) or (Lj, Lk) into the x-
structure, if they exist;

(9) [delete (Li, Lk) from the x-structure]
(10) fi;
(11) if p is a right endpoint of some segment Lj

(12) then let L
i
, and Lk be the two neighbours of

Lj in the y-structure;
(13) delete Lj from the y-structure;
(14) insert (Li, Lk) into the x-structure if the

intersection is to the right of the sweep line
(15) fi;
(16) if p is (Li, Lj)

then -- Li, Lj are necessarily adjacent in the
y-structure

(17) interchange Li, Lj in the y-structure
(18) let Lh, Lk be the two neighbours of Li, Lj in the

y-structure
(19) insert (Lh Lj)and (Li, Lk) into the x-

structure, if they are to the right of the sweep
line;

(20) [delete (Lh, Li) and (Lj, Lk) from the x-
structure;]

(21) output p
(22) fi;
(23) od
In the algorithm above the statements in square
brackets are not essential for correctness. Inclusion of
these statements does not increase asymptotic running
time, however it improves space complexity from
O(n+s) to O(n).

It remains to prove correctness and to analyse the
run time. For correctness it suffices to show that the
invariants hold true. Call a point critical if it is either
the endpoint of a line segment or an intersection of two
line segments. Then the invariant about the x-structure
and lemma 1 ensures that the point p selected in line (4)
is the critical point, which is closest to and ahead of the
sweep line. Thus every critical point is selected exactly
once in line (4) and hence all intersections are output in

line (21). Furthermore, line (7), (13), and (17) ensure
that the y-structure always contains exactly the active
line segments in sorted order and lines (8), (14), and
(19) guarantee the invariant about the x-structure. In
lines (9) and (20) we delete points from the x-structure
whose presence is not required anymore by the
invariant about the x-structure. This finishes the proof
of correctness.

The analysis of the run time is quite simple. Note
first that the, loop body is executed exactly 2n + s
times, once for each endpoint and once for each
intersection. Also a single execution deletes an element
from a x-structure (that is an exponential search tree) in

time O((log(n+s))) = O(logn) since s n
2
 and

performs some simple operations on a y-structure (that
is an exponential search tree) of size n in O(logn) time
Thus, the run time is O((n+s) logn).

The space requirement is clearly O(n) for the y-
structure and O(n+s) for the x-structure. If we include
lines (9) and (20) then the space requirement of the x-
structure reduces to O(n) since only intersections of
active line segments which are adjacent in the y-
structure are stored in the x-structure with this
modification. Thus space requirement is O(n).

4 Conclusions and Future Work
Lemma 4.
If the number of intersections S is O(n logn) our
algorithm is optimal.

Proof: We must execute a comparison with
algorithm [9] . So, we have to solve the following
inequality:
 (n+s) logn < nlogn + s n logn + s logn < nlogn +

s n(logn - logn) > s(logn - 1) n/s > (logn -

1) / (logn - logn) s/n < (logn - logn) / (logn - 1)

 s< n (logn - logn) / (logn - 1) = n(logn logn -
logn) / (logn - 1) = n logn(logn - 1)/ (logn - 1) =

n logn s = O(n logn) .
Contrary to algorithm [9] that requires O(n+s) space,
our algorithm requires O(n) space . Our future work
includes the reduction of the search time of [9]
algorithm using the RAM with W word size model.

References

[1] M. L. Fredman and D. E. Willard, “Surpassing
the information theoretic bound with fusion

trees”, J. Computer Systems Science 47, pp:
424-436, 1994.

[2] A. Anderson, “Faster deterministic sorting and
Searching in linear space”, TR- LU-Cs-TR:95-
160, Department of Computer Science, Lund
University, 1995.

[3] P. van Emde Boas, “Preserving Order in a
forest in less than logarithmic time and linear
space”, IPL 6(3), 80-82, 1977.

[4] R. Raman, “Improved data structures for
predecessor queries in integer sets”,
manuscript, 1995.

[5] Dan E. Willard, “Applications of the Fusion Tree
Method to Computational Geometry and
Searching” , ACM-SIAM symposium on
discrete algorithms,pp:286-295, 1992

[6] D.E. Willard, “Reduced Memory Space for
Multi-Dimensional Search Trees”, 2-nd
Symposium on Theoretical Aspects of Computer
Science (published in Springer - Verlag
LNCS182), 1985 , PP. 363-374. (The
multibranching B-tree appears in the last section
of this paper.)

[7] D.E. Willard and G.S.Lueker, “Adding range
restriction capability to dynamic data
structures”, JACM 32 (1985) pp. 597-619.

[8] J.L. Bentley and T.A. Ottmann. “Algorithms for
reporting and counting geometric
intersections”. IEEE Trans. Comput., C-
28:643-647, 1979.

[9] B. Chazelle and H. Edelsbruner. “An optimal
algorithm for intersecting line segments in the
plane”. J. Assoc. Comput. Mach., 39:1-54,
1992

[10] K.L. Clarkson and P.W. Shor. “Applications of
random sampling in computational geometry”,
II. Discrete Comput. Geom., 4:387-421, 1989.

