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 Abstract - A solution to the state estimation problem
under structural uncertainty (unknown or
changeable dimension of the system state space) is
given by the Interacting Multiple Model (IMM)
filter. The requirements for its applicability under
structural uncertainty are formulated. The highest
IMM model probability is an indicator for the true
model order and it can be used for structural
identification.  Results from test examples with
stationary systems and systems with structural
nonstationarity (changeable structure in the course
of the time) demonstrate the filter efficiency. The
scalar and multivariable cases are investigated.
CSCC'99 Proceedings:- pp.2241-2246

1 Introduction
The present paper considers the state estimation
problem subject to structural uncertainty -
unknown or changing dimension of the system
state space. The system state is estimated when
the structure and the true parameters of the
system model are unknown but they belong to an
uncertainty domain. A solution to this problem
by another MM algorithm is given in [7]. The
requirements for its applicability under struc-
tural uncertainty are formulated in [7]. These
requirements are here extended for the IMM
filter - a powerful scheme [2,5] for estimation of
hybrid (continuous-discrete) systems. The IMM
filter belongs to the group of the multiple-model
algorithms that recently are very popular [1, 2,
8, 10, 12]. In most cases the IMM estimator is
applied under parametric model/noise
uncertainty [1-5, 9, 11]. In contrast to this, here
the problem with structural uncertainty is
studied. The overall state estimate is a weighted
sum of q partial estimates, generated by a bank
of Kalman filters for q models with different
structure from the uncertainty domain. At the
same time the IMM model probabilities can be
used for model order determination.
    With the standard methods for structural
identification [6] the structure (model order)
selection is an iterative process. Usually, after
the initial model order computation on the basis

of the input-output data, the next obligatory step
is the model adequacy verification with the help
of different tests - by the zeros, poles and their
standard deviations, or based on the comparison
between the simulated/ predicted output with the
measured output, the residual errors, etc. The
presence of close poles and zeros is an indicator
that the model order is artificially increased and
the process of the structure selection is repeated
until receiving of  “enough good” results
according to the verification criteria.  In contrast
to this standard approach for structural
identification, the IMM estimator directly
provides the model order - it corresponds to the
model with the greatest probability, recursively
computed by the estimator. The current system
structure is detected based on the measurements
of the global system, and not by the outputs of
the separate subsystems.

2 IMM State Estimation under Structural
Uncertainty

    The state x Rk
n∈  of the system

  ( ) ( ) ( )x F k M x G M v Mk k k k k k k k+ + + += +1 1 1 1, , (1)

  y Cx wk k k= +                                 (2)

is estimated where y Rk
r∈ is the measurement

vector, vk
m∈ℜ  and  wk

r∈ℜ  are respectively

the system and measurement noises, assumed to
be white and mutually uncorrelated, with zero
means and variances, respectively, Qk  and Rk .

The system model (1) at time k is among q
possible models (modes) that are depending on
the parameter { }M qk ∈ 12, , ,L . M ik =  denotes

that the i-th submodel is in effect during the
sampling period k of length T. The model
switching is described by a Markov chain with
known initial model probabilities

{ }µi P M i= =0  and transitional probabilities

{ }p P M j M iij k k= = =−/ 1 , for i j q, , , ,= 1 2 L .

The IMM state estimation algorithm is a



Bayesian suboptimal recursive procedure [2, 5]
for obtaining the system state estimate

              $ $, ,x xk i k i k
i

q

=
=
∑ µ

1
                             (3)

as a weighted sum of partial estimates $xi ,

formed by a bank of operating in parallel
Kalman filters. At each recurrent cycle
( k k− →1 ) the initial conditions for the filter
corresponding to the mode M ik =  are

computed by mixing the preceding mode-
conditional estimates $xi , i=1,2,...,q.

       The order of the system model (1)-(2) is
unknown. The true model parameters F Gk k, ,

Ck , Q Rk k,  are also unknown but it is supposed

that they belong to an uncertainty domain. The
true model is approximated by q models from
this uncertainty domain. The uncertainty domain
contains p possible structures (models of
different orders n j pj , , , ,= 12 L ). From every

structure there are s models with different
parameters. The structures with different orders
are constructed in the following way: if from the

full state vector ( )x x x xT T
j
T T

= 1 2, , ,L  (for

the structure of maximum order), the i-th
segment xi  is dropped out, in the state vector of

the respective lower order structure, the
respective segment xi  is replaced by a zero

vector. It means that every segment from the
vector x  corresponds to some structure, and the
remaining segments are replaced by zeros. This
is important for the overall estimate (3) forma-
tion. The estimate of the j-th segment of the state
vector x  is formed on the basis of the j-th
segments of the vectors $ , , , ,x i qi = 1 2 L . An

important condition for the applicability of the
filter is to keep the correspondence between the
variables in the different IMM models when the
order of the state space is reduced and some
variables are dropped out. The true model is
determined by the highest IMM model
probability. The choice of the transition
probabilities matrix P of the IMM depends on
the considered problem specificity and the initial
information, if there is any. Examples satisfying
the above mentioned conditions are considered
below.

3 Experimental Results
   The system under consideration S  is linear,
composed by independent subsystems Si ,

i q= 1 2, , ,L  connected in parallel (Fig.1), and

every of these subsystems is described by a state
vector xi , i q= 1 2, , ,L .
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Fig. 1

For i=3 the general state vector of the system S

is ( )x x x xT T T T
= 1 2 3, , . If  some subsystems are

dropped out (a situation that often arises in
industrial or electronic systems), e.g. the
subsystems S2  and S3 , then the global system

S  is described by the vector ( )x xT T
= 1 0 0, , .

    In all the examples below a system composed
by three subsystems ( i = 3 ) is considered.
  The algorithm performance is evaluated by
Monte Carlo experiments for 100 runs. A
general measure of performance, characterizing
the filter consistency, is the Normalized
Estimation Error (NEE) [2] and it is presented.

Example 1. The system model (1)-(2) is
stationary (with constant matrices F G C Q, , , ,
and R ) and with unknown order. The true
model of the system S  is:

F e= −0 1. , G =1- e−01. ,  C =1, Q = R = 1.

The final state estimate is computed on the basis
of three IMM models with different order (first,
second and third) from the uncertainty domain.
For equalizing the dimensions of the matrices
and vectors, the respective elements are fulfilled
with zeros:

1) ( )F diag e1
0 067 0 0= − . , ( )G e

T

1
0 0671 0 0= − − . ;

2) ( )F diag e e2
0067 05 0= − −. . , ( )G e e

T

2
0067 051 1 0= − −− −. . ;

3) ( )F diag e e e3
0 067 0 5 1= − − −. . ,

   ( )G e e e
T

3
0 067 0 5 11 1 1= − − −− − −. . ,

( )Ci = 1 1 1 , Qi = Ri = 1, i = 12 3, , . Between the

models the first one has structure as the
structure of the true model, but its parameters
are different.
    The transition probabilities matrix and the
initial model probability vector are



P =

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


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.        (4)

The initial model probabilities in µ( )0  are cho-

sen equal, because the three models are equally
probable. The average model (mode) IMM
probabilities from Monte Carlo simulations are
given in Fig.2. It is seen that the probability of
the first model is the greatest, whereas the other
two are considerably smaller. On the basis of
them an inference can be drawn that the first
order model is the true one.
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  Fig. 2  Model probabilities

 The NEE is given in Fig. 3 and it demonstrates
that the IMM state estimate is consistent.
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Fig. 3   Normalized Estimation Error

Example 2. The IMM performance is
investigated when the true unknown system
model is

{ }F diag e e e= − − −01 0 5 1. . ,

( )G e e e
T

= − − −− − −1 1 101 05 1. . , ( )C = 1 1 1 .

The general IMM models are:

1) ( )F diag e1
0 067 0 0= − . , ( )G e

T

1
0 0671 0 0= − − . ;

2) ( )F diag e e2
0 067 0 33 0= − −. . ,

   ( )G e e
T

2
0 067 0 331 1 0= − −− −. . ;

3) ( )F diag e e e3
0 067 0 33 1= − − −. . ,

   ( )G e e e
T

3
0 067 0 33 11 1 1= − − −− − −. . ,

( )Ci = 1 1 1  and Qi = Ri = 1. The third order

model coincides with the true order model, but
its parameters are different.The transition
probabilities matrix and the initial model
probability vector have the form (4). The IMM
model probabilities and the NEE are given in
Figs.4 and 5.
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Because the first IMM model structure does not
coincide with the true model structure and at the
beginning the greatest transition probability is
given to the first model, the estimator needs
some period of time for finding the true structure
(the probability µ 3  corresponds to it).

Example 3. The system (1)-(2) is characterized
by changeable structure in the course of  the
time (structural nonstationarity)
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The models of the subsystems S1 , S2  and S3

have the form

S1 : F e1
01= − . , G1 =1- e−01. , C1 =1, Q1 = R1 = 1,  (6)

S2 : F e2
05= − . , G2 =1- e−05. , C2 =1, Q2 = R2 = 1, (7)

S3 : F e3
1= − , G3 =1-e−1 , C3 =1,  Q3 = R3 = 1.   (8)

   The IMM models are:

1)  { }F diag e e e1
01 0 5 1= − − −. . ,

          ( )G e e e
T

1
01 05 11 1 1= − − −− − −. . ,

2)  { }F diag e e2
0 1 0 5 0= − −. . ,

          ( )G e e
T

2
01 0 51 1 0= − −− −. . ,

3) { }F diag e3
0 1 0 0= − . , ( )G e

T

3
011 0 0= − − . ,

( )Ci = 1 1 1 , Q Ri i= = 1,  and { }diag .  denotes a

diagonal matrix. The structure and the
parameters of every IMM model coincide with
the structure and the parameters of the true
system models in the different time intervals.
       The transition probabilities matrix has the
form as in (4) and the initial model probabilities

vector is ( )µ( ) . . .0 0 98 0 01 0 01= T
. The ave-

rage model probabilities computed by the IMM
filter are given in Fig. 6 and the NEE - in Fig. 7.
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    Fig. 6   Model probabilities

A second experiment is performed when the
system true structure is changed according to
(5), but only the structure of every model
coincides with the structure of the true models of
the subsystems, whereas the parameters are
different. The IMM models matrices chosen
from the uncertainty domain are :

    1) { }F diag e e e1
0 067 0 5 1= − − −. . ,

        ( )G e e e
T

1
0 067 0 5 11 1 1= − − −− − −. . ,

      2) { }F diag e e2
0 067 0 5 0= − −. . ,

          ( )G e e
T

2
0 067 0 51 1 0= − −− −. . ,

3) { }F diag e3
0 067 0 0= − . , ( )G e

T

3
0 0671 0 0= − − . .
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Fig. 7  Normalized Estimation Error

  The average IMM model probabilities are
shown in Fig. 8 and the NEE - in Fig. 9.
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The results from the two tests are similar. In
both cases at the beginning ( k ≤ 150 ) the first
probability has the highest value, latter - the
second one, and finally ( k ≥ 300 ) - the third
model probability. These changes correspond to
the changes in the model structure: at the
beginning the model order is n = 3, after that
n = 2, and for k ≥ 300 , n = 1. It can be seen
from the comparison of the plots in Figs. 7 and 9



that the NEE for the models with accurate
parameters is smaller than the NEE for the
models with inaccurate ones.
Example 4. The considered system (1)-(2) is

multivariable (vk ∈ℜ3 , y Rk ∈ 3 , wk ∈ℜ 3 )

with the following structure (unknown)
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where S1 , S2  and S3  have the form (6), (7) and

(8) respectively.
   Different subsystems are working in the
course of the time - one of them are switched on,
another are switched off. The parameters of the
subsystems are accurate. The IMM is using
seven models - corresponding to all the possible
combinations of working subsystems.
      The IMM models matrices are:

      1) { }F diag e e e1
01 0 1= − − −. . ,

           { }G diag e e e
T

1
0 1 0 5 11 1 1= − − −− − −. . ;

      2) { }F diag e e2
0 1 0 5 0= − −. . ,

           { }G diag e e
T

2
01 0 51 1 0= − −− −. . ;

      3) { }F diag e e3
0 5 10= − −. ,

          ( )G e e
T

3
0 5 10 1 1= − −− −. ;

      4) { }F diag e e4
0 1 10= − −. ,

         { }G diag e e
T

4
0 1 11 0 1= − −− −. ;

5) { }F diag e5
01 0 0= − . , { }G diag e

T

5
011 0 0= − − . ;

6) { }F diag e6
050 0= − . , { }G diag e

T

6
050 1 0= − − . ;

7) { }F diag e7
10 0= − , { }G diag e

T

7
10 0 1= − − ,

C Ii = , Q Ii = 3 , R Ii = 0 01 3. , i = 17, , where I is

the identity matrix. The IMM transition
probabilities matrix and the initial model
probabilities vector are:

P =

0 94 0 01 0 01 0 01 0 01 0 01 0 01
0 01 0 94 0 01 0 01 0 01 0 01 0 01
0 01 0 01 0 94 0 01 0 01 0 01 0 01
0 01 0 01 0 01 0 94 0 01 0 01 0 01
0 01 0 01 0 01 0 01 0 94 0 01 0 01
0 01 0 01 0 01 0 01 0 01 0 94 0 01
0 01 0 01 0 01 0 01 0 01 0 01 0 01

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .





















,

( )µ( )0 1 7 1 7 1 7 1 7 1 7 1 7 1 7= T
.

The model probabilities and NEE plots are given
in Figs. 10 and 11. Because the IMM models
correspond to all the combinations of working
subsystems, it is possible by the model
probabilities to determine the model order and to
identify the active subsystems in every moment.
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 Fig. 10  Model probabilities
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      Fig. 11  Normalized Estimation Error

Another experiment is made by IMM models
corresponding to all the possible combinations
of subsystems but with inaccurate parameters

1) { }F diag e e e1
0 067 0 33 125= − − −. . . ,

    { }G diag e e e
T

1
0 067 0 33 1251 1 1= − − −− − −. . . ;

2) { }F diag e e2
0067 0 33 0= − − . ,

    { }G diag e e
T

2
0 067 0 331 1 0= − −− −. . ;

3) { }F diag e e3
0 33 1250= − −. . ,

          ( )G e e
T

3
0 33 1 250 1 1= − −− −. . ;

 4) { }F diag e e4
0 067 1 250= − −. . ,

    { }G diag e e
T

4
0 067 1 251 0 1= − −− −. . ;

5) { }F diag e5
0067 0 0= − . , { }G diag e

T

5
00671 0 0= − − . ;

6) { }F diag e6
0330 0= − . , { }G diag e

T

6
0 330 1 0= − − . ;

NEE

time (s)



7) { }F diag e7
1250 0= − . , { }G diag e

T

7
1250 0 1= − − . ,

C Ii = , Q Ii = 3 , R Ii = 0 01 3. , i = 17, .
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 Fig. 12  Model probabilities

Fig. 13  Normalized Estimation Error

The model probabilities and the NEE are
presented in Figs. 12 and 13. In spite of the fact
that only the structures of the models are true,
whereas the parameters do not coincide with
their accurate values, the IMM estimator is
finding the true model structure in the different
periodes of time. The NEE is bigger then the
NEE for the case with accurate parameters. It
should also be emphasized that in all examples,
the state estimates are characterized by a very
good consistency (obvious from the NEE plots).

4 Conclusions
    The Interacting Multiple Model filter has
been applied for state estimation in the presence
of structural uncertainty - unknown or changing
dimension of the system state space and its
performance is evaluated by Monte Carlo

simulations. The restrictions, concerning the
IMM application to state estimation under
structural uncertainty are formulated. The most
important one is to keep the correspondence
between the variables in the different IMM
models. The highest IMM model probability is
an indicator for the true model order and it can
be used for structural identification. In
comparison to the standard methods for
structural identification, where the model order
selection is an iterative process, the IMM
estimator directly provides the model order.
Results from test examples with stationary
systems and systems with structural
nonstationary (changeable structure in the
course of the time) demonstrate the filter
efficiency. The scalar and multivariable cases
are investigated.
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