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Abstract:- We consider the following problem as defined by Grove et al. [5]: Given a set of n isothetic rectangles in 3D
space determine the subset of rectangles that are not completely hidden. We present an optimal algorithm for this
problem that runs in O(nlogn) time and O(n) storage. Our result is an improvement over the one of Grove et al. by a
logarithmic factor in storage and is achieved by using a different approach. An analogous approach solves the problem
for other kinds of objects too.
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1 Introduction
A ubiquitous task in computer graphics is that of
rendering scenes of objects in 3D space. Part of this
task is, given a viewing position, to determine the
portions of the objects that are visible from the viewing
position. In order only these to be displayed on the
screen. This problem is commonly known as hidden
surface removal or hidden line elimination depending on
whether the displayed parts are surface patches or line
segments. There are two main approaches to the
problem: image space and object space. In the first
approach, which do computer graphics algorithms
implement, the projections of the objects on the screen
are treated as raster images (i.e. images composed by
pixels). As a consequence their output is a raster image
too, and their running times depend on the raster size
(screen resolution). On the other hand, algorithms in
computational geometry treat the projections of the
objects as vector images. Their output is a graph, called
the visibility map, whose edges are visible segments of
object’s edges and whose vertices are visible vertices or
cross points of visible edges. Their running times
depend on the size of the visibility map.

Although there are certain advantages in using
object space solutions like precise scaling of images
without loss in detail, in practice image space
algorithms have proved to be more successful because
they can be efficiently implemented in hardware. An
attempt to combine the two approaches is the object
complexity model, introduced by Grove et al. in [5]. In
this model the hidden surface removal problem is
solved in two steps. In the first step the subset of
objects that are not completely obscured by other

objects is determined using object space methods. The
size of this subset is called the object complexity of the
scene, denoted q. In the second step an image space
algorithm (like the z-buffer) is applied on this subset of
objects only. Because of the first step, a significant
speed up is expected in the execution of the image
space algorithm. The challenge in this approach is to
develop algorithms for the first step whose time can be
bounded by a function of the object complexity q and
the input size n. Standard object-space algorithms are
inefficient for this purpose because their running times
are lower bounded by the visibility map size k, which
can be È(q2).

This approach can be efficiently realised for the
window-rendering problem as shown in [5]. This is the
problem of displaying on a screen the contents (text,
images) of a set of n rectilinear windows which may
partially overlap and for which a precedence order is
known. It is easy to rephrase this as a hidden surface
removal problem in which the objects are rectangles
with sides parallel to the x-,y- axes. For the standard
hidden surface problem the best solutions [1,4.12] run
in O((n + k)logn) time and O(nlogn) storage. The
storage can be reduced t o O(n) by a simple technique
as shown in [9]. By modifying appropriately the
algorithm of Bern [1], Grove et al. showed that the
object complexity version of the problem can be solved
in optimal O(nlogn) time and O(nlogn) storage.
A space and time optimal algorithm for the problem has
been given in [10]. This solution applies a similar idea
as in [9] to the plane sweep algorithm of Grove et al. In
this paper we propose an entirely different optimal
solution which may be conceptually more appealing



and easy to implement. An advantage of our approach
when compared to the one of [10] is that it requires a
much simpler version of the linear Union-Find
algorithm of [3], which can be easily implemented.

In the following section we describe a solution that
matches the performance of [5] i.e. runs in O(nlogn)
time and space. Our solution is based on the approach
of Goodrich et al. [4], which we have modified
appropriately. Then in section 3 it is shown how to
reduce the storage to O(n) by using a similar idea as in
[9]. Finally in the last section we show that the general
approach can be applied effectively for other kinds of
objects too.

2 An Incremental Approach
The problem we consider can be stated as follows:
Given is a collection of n rectangles in 3-dimensional
space which are parallel to the xy-plane and whose
sides are parallel to the x-,y- axes. We are asked to
determine the subset of rectangles that are not
completely hidden by other rectangles when viewed
from a point at z = + . We will use the notation R.x1,
R.x2, R.y1, R.y2, R.z for the x-, y- and z- coordinates of
rectangle R, i.e. R = [R.x1, R.y2] x [R.y1, R.y2] x R.z.

We will use an incremental approach analogous to
the one of Goodrich et al. This approach to hidden line
elimination problems was introduced by Guting and
Ottman in [6] and was also used in [7, 13, 14]. The
rectangles will be processed in descanting z-order
starting from the one nearest to the viewer, and a
structure storing the union of the projections of all
rectangles encountered so far, will be maintained.
Following the terminology of [4] we call this union the
shadow of the rectangles. Each time a new rectangle is
encountered we will query the structure storing the
shadow to determine if there are parts of the rectangle
not covered by the shadow. If there are such parts then
we add the rectangle to the set V of visible rectangles
(initially this set is empty). Then the structure storing
the shadow is updated to reflect the addition of the new
rectangle, and the algorithm continues with the next
rectangle.

By the above brief description it is clear that the
algorithm correctly computes the subset of visible
rectangles (which will be the set V after completion of
the algorithm). We implement the structure for shadow
maintenance as a simplified version of the Hive Tree of
[4]. As shown in lemma 2.1 this structure can be built
in O(nlogn) time using O(nlogn) storage. Furthermore
in lemma 2.2 and corollary 2.5 it is shown that all
queries and updates performed by the algorithm take

O(nlogn) time after an O(nlogn) time preprocessing.
Therefore, we have the main result of this section stated
in the following:
Theorem 2.1 The rectangles visible from z = +  in. a
set of n. iso-oriented rectangles in 3D space can be
determined in O(nlogn) space and time.

2.1 The Data Structure
As already mentioned the data structure is a simple
version of the Hive Tree which is introduced in [4]. The
Hive Tree is a segment tree augmented with auxiliary
structures in its nodes to facilitate shadow maintenance.
We will give an overview of this structure as needed for
our purposes.

Let x1, x2, x3,…, x2n be the x-coordinates of the
rectangles in ascending order (without loss of generality
we assume that the x-coordinates are distinct). The
skeleton of the structure is a segment tree T. T is a
static binary balanced tree whose leaves are associated
with the elementary x-ranges [x1, x2], [x2, x3], .. , [x2n-1,
x2n] in this order. Each node u of the tree has an
associated xrange(u) equal to the union of the xranges
of its two children. Known properties of the segment
tree are: (i) at each level of the tree the xranges of the
nodes constitute a partition of [x1, x2n] (ii) the nodes
whose xranges contain a value x lie in a root to leaf
path, and (iii) any interval [xi, xj] can be associated to
O(logn) nodes u such that xrange(u)  [xi, xj] and

xrange(parent(u))  [xI, xj]. Note that by property (iii)
any interval can be partitioned to O(logn.) maximal
subintervals (xranges).

In two dimensions each xrange [xi, xj] defines a slab
delimited by the two vertical lines x = xi, x = xj. Every
rectangle R can be associated to O(logn) nodes
according to [R.x1, R.x2]. For each node u we denote by
S(u) the set of rectangles associated to u or to
descendants of u. Note that rectangles in S(u) either
intersect both boundaries of the slab of u, or have at
least one vertical side inside the slab. Let y1, y2, . ., yp

be the y-coordinates of rectangles of S(u). We draw
horizontal lines y = y1, y = y2, . . . , y = yp partitioning
the slab into p-1 horizontal strips. These strips are
stored as a sorted list denoted as Strip(u). For each
strip h in Strip(u) we store two lists Up(h), Down(h).
Up(h) contains all strips in Strip(parent(u)) that
intersect h, while Down(h) contains all strips in
Strip(left_child(u))  Strip(right_child(u)) that
intersect h. Note that strips in Down(h) form a partition
of strip h. There is also an equivalence between Up and
Down lists, specifically h E Up(h') if h'   Down(h).
Also note that Down(h) contains exactly two strips (one
in each child). The Up and Down lists are implemented



as doubly linked lists. The following lemma bounds the
size and construction time of the structure.
Lemma 2.1 The Hive Tree for a collection of n
rectangles in the plane can be constructed in O(nlogn)
time and space.
Proof. The proof follows from lemma 2.2 of [4] for the
special case in which the skeleton of the structure is a
binary tree. In brief the arguments go as follows: For
the space notice that the size of all lists Up(h) is the
same with the total size of lists Down(h) because of the
equivalence property. The total size of Down(h) lists
can be bounded by twice the size of all lists Strip(u)
since each list has size 2. For the size of lists Strip(u)
observe that each rectangle contributes two strip
boundaries to each one of its associated nodes and their
ancestors. Since there are O(logn) associated nodes
whose ancestors lie in a forked path, each rectangle
contributes O(logn) strip boundaries. Therefore the size
of all lists and the size of the structure is O(nlogn). The
lists can be constructed recursively, in time bounded by
their size by constructing first the lists of the root and
then using these lists to compute the lists of its children.

2.2 Determining Visible Rectangles
We process the rectangles in descending depth order.
Let R1, R2, . . ., Ri-1 be an order of the rectangles in
decreasing z-coordinate. At the time we process
rectangle Ri rectangles R1, R2,..., Ri-1 will have been
inserted in the Hive Tree. The Hive Tree will be used to
store a representation of the union of the processed
rectangles. We denote this union by Ui. Processing of
Ri involves two steps: First we have to query the Hive
Tree to determine if Ri  Ui = Ui. If so then the
rectangle is completely obscured by the rectangles R1,
R2, . . ., Ri-1 else there is a part of Ri which is not
hidden, in which case rectangle Ri is reported as visible.
Second, we have to update the Hive Tree in order to
represent the union Ui+1 = Ui  Ri, that is insert Ri in
the Hive Tree. We will show how to perform both steps
in a single access of the Hive Tree.

A strip can be in one of three states full, open or
touched. A strip is full if it is inside Ui it is open, if it is
outside Ui and it is touched if it partially intersects Ui.
It follows from the definitions that (i) if h is full (or
open) then all strips h’  Down(h) are full (open) too,

and (ii) if h is touched then all strips h’  Up(h) are
touched too. Note that initially all strips are open while
upon termination of the algorithm all strips have
become full.

As in [4] we will use some additional lists for each
strip h. These are NFU(h) which stores the strips in
Up(h) that are not Full and OD(h) which stores the

strips in Down(h) that are open. Initially NFU(h) =
Up(h) and OD(h) = Down(h).

Now consider querying the structure with rectangle
Ri. Rectangle Ri can be associated to O(logn) nodes of
the Hive Tree. The slabs of these nodes are disjoint and
partition rectangle Ri to O(logn) pieces. Each strip of
these nodes, is either completely contained in Ri or lies
outside Ri. So the rectangle can be decomposed into a
number of strips. The query algorithm must be able to
determine if there is one such strip that is not full. If so,
then there exists a part of Ri not covered by Ui.

This can be done efficiently by the notion of
principal rectangles as defined in [4]. For each strip h
that belongs to node u the principal rectangle is the
highest rectangle (the one with biggest z-coordinate)
among the rectangles of S(u) that contain strip h. Note
that each strip has at most one principal rectangle.
Principal rectangles are computed in a preprocessing
step. After having determined the principal rectangles it
is easy to compute for each rectangle R a list P(R) of
all strips for which R is a principal rectangle.

Given the list P(Ri) it is trivial to perform the query:
we visit all strips in P(Ri) and check if there exists one
which is not full. The correctness follows from the fact
that all-remaining strips which are covered by Ri and
are not in P(Ri) need not be examined because they are
full (otherwise Ri would be the principal rectangle for
them).

It remains to show how to update the Hive Tree.
Consider again the strips in P(Ri). If all of them are full
then nothing needs to be done (indeed adding Ri does
not change the union Ui). Otherwise, let h is a strip in
P(R), which is not full. First we mark this strip as full.
Then for each strip h' in OD(h) we remove h from
NFU(h'). If this results to NFU(h') = 0 then we also
mark h' as full, we remove h' from OD(h) and continue
in the same way with strips in OD(h'). We act
analogously for strips in NFU(h). That is, for each strip
h' in NFU(h) we remove h from OD(h'). If this results
to an empty list then we mark strip h' as full, we
remove h' from NFU(h) and continue in the same way
for strips in NFU(h').

This completes the description of the algorithm. A
bound for the total time of queries and updates is
provided by the following lemma.
Lemma 2.2 The time spent for al1 queries and updates
in the Hive Tree is bounded by the size of the Hive
Tree.

Proof. Each query processes the strips in P(Ri) for
each rectangle Ri. Because each strip has a unique
principal rectangle it follows that each strip is
processed once. So the query time is bounded by the



total size of lists Strip(u). Updates also process strips
in NFU(h) and OD(h) for each visited strip h. This kind
of processing may cascade to several ancestors and
descendants of each associated node u. However, notice
that for each visited strip h' a deletion is made from
either NFU(h') or OD(h'). Since the total number of
deletions during all updates can not exceed the total
size of the lists NFU and OD, the claimed bound
follows.

In the preprocessing step we have to compute for
each strip h its principal rectangle. First we will need
the following result.
Lemma 2.3 We can compute in O(nlogn) time for each
node u, the set S(u) of its associated rectangles, the
depth order of rectangles in S(u) and the y-order of
their horizontal boundaries.

Proof. In a preliminary step we sort the y- and z-
coordinates of the rectangles. For each rectangle we
compute in O(logn) time a list of associated nodes in
the Hive Tree. For each node in the tree we create two
empty lists the z-list and the y-list. Then we process all
rectangles in descending depth order and add each
rectangle to the z-lists of its associated nodes. This
produces in O(nlogn) time for each node a list of its
associated rectangles in descending depth order. In the
same way we can compute for each node its y-list
containing the y-order of the boundaries of its
associated rectangles.

Given the information computed in the previous
lemma we can solve the principal rectangle problem for
the strips of each node of the Hive Tree. The solution is
described in the following:
Lemma 2.4 Given the z- and the y-order of the
boundaries of rectangles in S(u) the principal
rectangle for each strip in Strip(u) can be computed in
time O(|Strip(u)|).

Proof. First we restrict our attention to the strips
defined by the boundaries of rectangles in S(u) The
strips in Strip(u) are contained in these strips, so their
principal rectangles can be derived easily from the
principal rectangles of the latter. Then the problem can
be rephrased as a 2-dimensional interval visibility
problem, specifically: given a set of horizontal
segments in the y-z plane determine the visible parts of
the segments from a point at z = + . This problem can
be solved using the linear time Union-Find algorithm of
Gabow and Tarjan [3] in O(|S(u)|) time (see the off line
min problem in [3]). Then in O(|Strip(u)|) time we can
determine in a single pass of the list Strip(u) the
principal rectangles for its strips.

As a consequence of the previous lemmas the
preprocessing time can be bounded by the total size of
the lists Strip(u) i.e.
Corollary 2.1 The preprocessing time is bounded by
the size of the Hive Tree.

3 Space Reduction
To reduce the storage of the algorithm we will use the
same idea as in [9], that is we will partition the scene
into O(logn) vertical slabs and we will solve the
problem independently in each slab in O(n) time and
space. It is interesting to note that in our approach this
simple partitioning scheme directly reduces the space to
O(n) without further modifications of the previous
approach.

Initially we sort the x- y- and z- coordinates of all
rectangles in all slabs and we call the resulting
orderings Ox, Oy, Oz respectively. We define the slabs
by drawing vertical lines in the x-y plane, so that in
each slab there are no more than [n/logn] vertices of
rectangles. In this way we have O(logn) slabs each
containing O(n/logn) vertices. In each slab we
distinguish two sets of rectangles denoted Sp and Sf.
The rectangles of Sf span the x-range of the slab while
the ones of Sp have one or both of their vertical edges
inside the slab. For both sets of rectangles we consider
only the portions of rectangles inside the slab. Note that
|Sp| = O(n/logn) and |Sf| = O(n). For each slab we
apply the algorithm of the previous section with input
the rectangles of Sp U Sj. The following lemma bounds
the time and storage of this solution.
Lemma 3.1 The visible rectangles in a single slab can
be reported in O(n) space and time.

Proof. First we will show that the hive tree has size
O(n). The storage for the rectangles of Sp clearly is
O(n) since there are O(n/logn) such rectangles. The
rectangles of Sf are all associated to a single node in the
Hive Tree, its root, since they span the x-range of the
slab. So the storage needed for them is also O(n). By
using the same algorithm as in lemma 2.1 the Hive Tree
can be constructed in time bounded by its size if the y-
order of rectangles of Sf is known. This order can be
derived in O(n) time from the ordering Oy of all
rectangles. So the Hive Tree can be built in O(n) time
and storage. By lemma 2.2 the time of all queries and
updates will be bounded by O(n). However we still
need a way to bound the time of the preprocessing. The
preprocessing time will be O(n) if the time of lemma
2.3 is reduced to O(n). The sets S(u) clearly can be
computed in O(n) time. For all nodes except for the
root the computations take O(n) time because there are



O(n/logn) rectangles. For the root the y- and z- order of
rectangles of Sf can be derived in O(n) time by the Oy

and Oz orders of all rectangles. Now it’s easy to bound
the time of the whole algorithm as stated in the
following.
Theorem 3.1 The visible rectangles in a set of n iso-
oriented rectangles can be determined in O(nlogn)
time and O(n) storage.

Proof. The total time for all slabs is O(nlogn). The
time to compute the orders Ox, Oy and Oz is O(nlogn)
for sorting. The storage used during the process is
always O(n) by the previous lemma.

The algorithm described above reports multiple
times the rectangles that are visible in more than one
slab. This can be avoided by using a table of size n to
mark the reported rectangles. The rectangles are
numbered from 1 to n and rectangle number indexes the
table.

4 Extensions and Future Work
In this paper we have presented an incremental
approach for determining visible rectangles in optimal
time and storage. The main algorithm results from
some direct modifications of a well-known algorithm
for standard hidden surface removal for rectangles.
Naturally the question is raised of whether other known
algorithms for hidden surface removal can be
appropriately modified to solve the object-complexity
version of the problem for more general objects. There
seems to be an inherent difficulty for most algorithms
because their time complexities strongly depend on the
size k of the visibility map. However the incremental
approach we have presented, apart from being more
appealing than the plane sweep approach of [5] it may
also be more promising for other kinds of objects too.

Consider for example the case in which the objects
of the scene have small union size. We can use the
approach of [14], which is as follows: The objects are
processed in descending depth order and the shadow
(union) of processed objects is explicitly computed.
However instead of processing one object in each step
in that approach the visibility map of the next f objects
is computed in O(c) time, where c is the current size of
the shadow. Then, in a merging step which takes
O(clogc+k') time, the visibility map is compared
against the shadow to find the k' arts not obscured by
the shadow. As shown in [14] this approach takes O(n
C logn+k) time where C is the maximum shadow size.

To solve the object complexity version of the
problem we can implement the merging step
appropriately, so that it runs in O(clogc) time (the

details are easy and are left to the reader). Then by the
analysis of [14] the time is bounded by O(n C logn).
Now consider the classes of objects studied in [7]. For
the case in which the objects are discs or convex
homothetic objects C can be bounded by q [8], for the
case of fat triangles C is bounded by O(qloglogq) [11],
while for the case of polyhedral terrain C is bounded by
qa(q), where q is the object complexity and a is the
inverse of Ackerman's function. So this approach yields
an output sensitive algorithm with time O(n q logn) for
discs and convex homothetic objects, for fat triangles
O(n qloglogq logn) and O(n qa(q) logn) for terrains.
This is optimal when y is constant and in the worst case
(q = n) it is much more efficient than computing a
visibility map of size È(n2).

It is interesting to investigate whether this approach
can solve the object complexity version of hidden
surface removal for other kinds of objects as well. It is
also interesting to look for more efficient algorithms for
the case of fat triangles and the case of objects of small
union size.
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