
A Genetic Algorithm scheme for
Web Replication and Caching

ATHENA VAKALI
 Department of Informatics

Aristotle University
 54006 Thessaloniki

GREECE

Abstract: - Design and implementation of effective caching schemes has been a critical issue with respect to
World Wide Web objects circulation and availability. Caching and replication have been combined and
applied in prototype systems to reduce the overall bandwidth and increase system's fault tolerance. This paper
presents a model for optimizing access performance when requesting Web objects across distributed systems.
The replication and caching scheme is designed by the use of a Genetic algorithm. Cached data are considered
as a population evolving over simulated time, replicating the most prominent data to dedicated replication
servers. The simulation model is experimented and tested under cache traces provided by a major Squid proxy
cache server installation environment. Cache hit rates and bytes hit length are reported showing that the
proposed evolutionary mechanisms improve cache consistency and reliability.

Key-Words: - World-Wide Web replication and caching, Cache Consistency, Genetic Algorithms,
Evolutionary Computation IMACS/IEEE CSCC'99 Proceedings, Pages:2221-2226

1 Introduction
The continuously rapid growth and worldwide
expansion of the Internet has introduced new issues
such as World-Wide Web (WWW) traffic, bandwidth
insufficiency and distributed objects circulation. Web
caching has presented an effective solution, since it
provides mechanisms to faster web access, improved
load balancing and reduced server load. Most web
servers are reinforced with proxy cache servers which
result in web objects coming closer to end users by
adding specific cache consistency mechanisms and
cache hierarchies. Several approaches have been
suggested for more effective cache management and
the problem of maintaining an updated cache has
gained a lot of attention recently, due to the fact that
many web caches often fail to maintain a consistent
cache. Several techniques and frameworks have been
proposed towards a more reliable and consistent
cache infrastructure [2], [4].
Cache consistency mechanisms have been included in
almost every proxy cache server (e.g. [7],[15]) and
their improvement became a major research issue. In
[10] a survey of contemporary cache consistency
mechanisms in Internet is presented and the
introduction of trace-driven simulation shows that a
weak cache consistency protocol reduces network
bandwidth and server load. The design and

efficiency of a Cache hierarchy is a major issue in
most proxy caches and in various research efforts
[3],[7],[15]. In [3] it is shown that hierarchical
caching of ftp files could eliminate half of all file
transfers, while in [6] a low-level simulation of a
proxy cache considers further details as connection
aborts to extend the high-level metrics being used so
far.
Caching and replication is discussed in [1] where the
performance of a proxy cache server is evaluated and
validated. Caching and replication have proved to be
beneficial in both the circulation of web objects and
the Web server's functionality. The need for
replication is discussed in [16] where an alternative
approach suggests the wide distribution of Internet
load across multiple servers. The replication and
caching methodology has raised a lot of research and
implementation interest. Some working groups and
research teams have been established for a
coordinated replication and caching framework
within the Internet community [8],[11].
Evolutionary computation policies have been used to
solve scientific problems demanding optimization
and adaptation to a changing environment. The idea
in these approaches is to evolve a population of
candidate solutions to a given problem, using
operations inspired by natural genetic variation and
natural selection (expressed as “survival of the

fittest”). Genetic algorithms (GAs) comprise one of
the main evolutionary methods, applied to many
computational problems requiring either search
through a huge number of possibilities for solutions,
or adaptation to an evolving environment. More
specifically, GAs have been applied in the areas of
scientific modeling and machine learning, but
recently there has been a growing interest in their
application in other fields [5],[9],[12],[17].
This paper presents a model based on an evolutionary
computation approach to design and simulate an
effective Web replication and caching scheme. The
model is implemented by an approach inspired by the
Genetic algorithm process. The implementation is
based on the Squid proxy-cache server specifications
for representing the Web objects as individuals to be
cached and replicated. The simulated model is
experimented under real Squid cache traces and cache
log files. The contributions of the paper are twofold.
First, a caching scheme is maintained by the use of
evolution over a number of successive “'populations”
of cached objects. Second, replication is introduced to
extend the caching scheme and the objects chosen for
replication are identified by their preservation on the
successive steps of the evolutionary scheme.
The remainder of the paper is organized as follows.
The next section describes Web proxy cache
environments and various cache infrastructures, with
emphasis on the Squid proxy cache. Section 3
presents the design and structure of the replication
and caching model which is based on evolutionary
computation. Section 4 discusses the model's
implementation details and operational functions
whereas results from trace driven experimentation are
presented in Section 5. Simulation results concern
cache hit rates, byte hit lengths and file types hit rate.
Section 6 points the main conclusions.

2 Web Proxy Caches
Caching was initially introduced to provide an
intermediate storage space between the main memory
and the processor, relying on locality of reference by
assuming that the most recently accessed data has the
highest potential of being accessed again soon.
Caching was extended to Web servers to improve
client latency, network traffic and server load. A Web
cache is an application residing between Web servers
and clients. Cache server watches requests for Web
objects (html pages, images and files). If there is
another request for the same object, cache will use
the copy it has, instead of asking the original server
for it again [14]. The main Web caches advantages
are the reduce in both latency since request is
satisfied by the cache being closer to the client and

traffic since each object is gotten from the server
once, thus reducing the bandwidth used by a client.

Fig 1. The structure of Squid Proxy Cache

Nowadays a variety of cache servers are available for
the World-Wide Web caching, most of them freely-
distributed on the Internet. A brief description of the
three most wide-spread proxy cache servers follows :
• CERN proxy server has been widely adopted

since there was a large infrastructure of CERN
web servers already installed. A heuristic known
as Time-To-Live (TTL), was used to manage
object's staleness [10], [18].

• Netscape Proxy Server has been available
commercially since 1995 and checks object's
staleness by supporting TTL frame based on
object's age when it is cached.

• Harvest cache software was developed with the
aim of making effective use of the information
available on the Internet, by sharing the load of
information gathering and publishing between
many servers. Harvest produced the ICP protocol
for co-operation between individual caches.
Newest Harvest developments are available
commercially whereas a team from the
N.L.A.N.R. (National Laboratory for Advanced
Networking Research) has continued to provide a
free version under the name Squid [18]. Squid
has evolved by additional features for objects
refreshment and purging, memory usage and
hierarchical caching.

The Squid Proxy Cache is further discussed since the
present paper develops a simulation environment
based on the Squid cache model and experiments are
made by the use of Squid trace log files. Squid
caching software has gained a lot of attention lately,
since it is used on an experimental network of seven

C
A
C
H
E

00

01

0F

...

00

01

...
FF

00

01

...
FF

00

01

...
FF

files

files

files

files

files

files

files

files

files

major co-operating servers across U.S.A., under a
project framework by NLANR [13].
These servers support links to collaborating cache
projects in other countries. Aristotle University has
installed Squid proxy cache for main and sibling
caches and supports a Squid mirror site. The present
paper uses data from this cache installation for
experimentation.
Figure 1 represents the organization of Squid cache
hierarchy storage-wise, consisting of a two-level
directory structure. Assuming approximately 256
objects per directory there is a potential of a total of
1,048,576 (=16 * 256 * 256) cached objects. Squid
switched from the TTL base expiration model to a
Refresh-Rate model. Instead of assigning TTLs when
the object enters the cache, now a check of freshness
requirements is performed when objects are
requested. The refresh parameters are identified as
min_age, Percent and max_age. Age is how much the
object has aged since it was retrieved whereas
lm_factor is the ratio of age over the how old was the
object when it was retrieved. expires is an optional
field used to mark an object's expiration date.
Client_max_age is the (optional) maximum age the
client will accept as taken from the http cache-control
request header. The following algorithm is used by
Squid to determine whether an object is stale or fresh.

if Age > Client_max_age then
 Return "STALE"
 else if Age <= min_age then
 Return "FRESH"
 else if (expires) then // expires field exists
 if (expires <= NOW) then Return "STALE"
 else Return "FRESH"
 else if Age > max_age then
 Return "STALE"
 else if lm_factor < Percent then
 Return "FRESH"
 else Return "STALE"

Squid keeps size of the disk cache relatively smooth since
objects are removed at the same rate they are added and
object purging is performed by the implementation of a
Least-Recently-Used (LRU) replacement algorithm.
Objects with large LRU age values are forced to be
removed prior objects with small LRU ages. Squid cache
storage is implemented as a hash table with some number
of hash ``buckets" and store buckets are randomized so
that same buckets are not scanned at the same time of the
day [18].

3 The Replication and Caching Model
 Replication has been suggested to increase
availability of data while it imposed the need for Web

object changes propagation between the original and
replicated sites. Therefore, in the replication and
caching scheme there is a need to maintain a
mechanism to result in consistency and reliability
between the original and the replicated servers. The
basic idea of the model presented here is to support
caching and replication under a scheme which is
evolved over simulated time by an iterative approach
resembling the GA process.
1. Problem Statement : A cache is maintained on a

primary server with its entries being the file
objects stored in the cache area. The problem is
to improve the cache content on a primary server
by reinforcing it with accompanying caches
formed by replication of selected file objects on
nearby servers.

2. Encoding : A string representation was used to
identify each cached file object. The actual Web
object that can be cached and replicated, is
identified by the filename where it's stored.
Squid objects are the last level in the cache
storage hierarchy (Figure 1), stored in files with
filenames coded as hexadecimal numbers strings
(e.g. 001af200, 000be301 are actual object's
filenames). Therefore, each individual cached
object is encoded as a binary bit string
corresponding to the hexadecimal string of the
object's filename.

3. Objective Function :each cached object is
assigned with a “fitness” value derived by a
function used to characterize its “freshness”.
Since fitness function drives the evolution of the
population, it is important to reward the stonger
(improved) cache content individuals. Therefore,
a metric characterizing cache object's freshness
will be the best choice for the evolution of the
replication and caching scheme. As described in
Section 2 all proxy caches relate their object's
refresh policy with timing object's last
modification period. Therefore, in our
implementation for the replication and caching
model, each individual object's fitness will be
evaluated by a factor corresponding to the ratio of
object's “ages” since its retrieval and its last
modification. Therefore, the fitness function is
given by,

where the nominator corresponds to the time
that passed since the object's retrieval and the
denominator is the age of the object at the time of
its retrieval. The fitness function for each cached
object considers its “cost” while it remains in

T object-retrieval

Fitnessobject =
T object-age

cache. It is important to allow infeasible solutions
into the population because good solutions are
often the result of breeding between a feasible
and infeasible solution.

4. The Algorithm :The algorithm commences with
an initial population of individual cached Web
objects, which is updated at each evolutionary
step resulting in a new “generation”. A Web
object requested by the client, could be in cache
area or not. If its not in cache the caches of the
replicated servers are checked. The service of
each request is performed according to the
following algorithm :

 if (Request in Primary_Cache) then
 Return cache_hit
 else if (Request in Replica_cache) then
 Return cache_hit
 else file_in_cache
 Return cache_miss
 ...
 if (Refresh_time) then
 Cache_Update
 Replica_Update
 ...

The Refresh_time is modeled as a flag in the
algorithm to identify whether to perform the cache
and replica refreshment according to the GA process.

Fig 2. The Caching and Replication algorithm

As depicted in Figure 2 the cache refreshment is
based on the evolution of a cache population by
updating the replicated sites at each evolution cycle.
The Cache_Update and the Replica_Update (marked
as I, II in Figure 2) are performed over simulated time
by preserving successive generations of objects to be
cached according to the following criteria :
Update I :
the current population is refreshed by selection of
individual objects which could remain or be purged

from the cache area based on their fitness value and
the operations of crossover and mutation. (The
operations of crossover and mutation are further
discussed in the following paragraph).
Update II :
individuals to be replicated will be identified by their
strength at remaining on the cache area. More
specifically, objects that are present to the previous
and the resulted new generation are chosen for
replication at the appropriate replication server. The
replication process directs the chosen Web objects to
the dedicated cache area at the appropriate replication
server.
5. Operators :
The two genetically-inspired operations, known as
crossover and mutation are applied to selected
individuals to successively create stronger
generations. Crossover is applied between two
individuals (parents) with some probability. The
crossover probability determines whether the two
parents will survive in the next generation or whether
they will be exchanged to result in two new
offsprings. The exchanging of parents parts are
performed by cutting each individual at a specific bit
position and produce two “head” and two “tail”
segments. The tail segments are then swapped over
to produce two new full length individual strings.
Mutation is introduced to prevent premature
convergence to local optima by randomly sampling
new points in the search space. Mutation is applied to
each child individually after crossover. It randomly
alters each individual with a (usually) small
probability (e.g. 0.001).

4 Implementation

Fig 3. Overview of the Caching and Replication
scheme.

 The model described in the previous section has been
implemented to optimize the cache consistency and

CACHE

population

Select
parent
individuals

new
cache
population

identify
replication
individuals

update
original &
replicated
servers

ÉÉ

É

CLIENT

REPLICATE
SERVER

1

PRIMARY
SERVER

CACHE

REPLICATE
SERVER

2

REPLICATE
SERVER

3

the Web objects access process by the replication of
selected cacheable objects among the primary and
replicated servers. Our GA model follows the Simple
GA proposed in [9]. The GA can be adapted to the
cache management process since cache consists of a
large space of objects (stored files). Figure 3 presents
the basic framework followed at the simulation
process to implement the GA model for replication
and caching. In this figure there are three supported
replication servers each one in close collaboration
with the primary server. Caches in primary as well as
on replicated servers are modeled as hash tables and
replication servers are implemented such that each
one stores a specific Web object type (e.g. .html
pages, .gif, .jpeg files). The population evolves over
successive generations progressing within a loop
limited by a number of maximum generations
specified at each cache and replica update at the
simulation run. The evolution process is implemented
such that the fitness of the best and the average
individual in each generation is improved towards the
global optimum.
The evolutionary cache environment is simulated
such that individual objects are encoded as the cached
files under Squid proxy cache. The Squid proxy
cache server is installed at the Aristotle University of
Thessaloniki (AUTh) and is the top proxy server of
Greek academic institutes. Traces from AUTh
logfiles have been used to test our cache update
model. Squid (in its default configuration) produces
four logfiles:
• logs/access.log: requests posed to proxy server

with information regarding how many people
use the cache, how much each one requested etc.

• logs/cache.log : information Squid wants to know
such as errors, startup messages etc.

• logs/store.log : information of what's happening
with our cache diskwise; it shows whenever an
object is added or removed from disk.

• cache/log : contains the mapping of objects to
their location on the disk.

The necessary fields from Squid's log files are used to
identify the object's fitness function. As pointed out
in the previous section each object's fitness function
is related to the objects freshness / staleness factor)
which will be implemented as a fraction with its
nominator corresponding to the time that passed since
the object's retrieval and the denominator presents the
age of the object at the time of its retrieval.

5 Experiments - Results
The present simulator modeled a replication and
caching scheme based on the idea of the GA policy
such that the cache reform and the replication process

evolves over a number of generations. The simulator
was tested under Squid cache traces and by the use of
their corresponding log files. Traces refer to the
period from 01.10.98 to 31.12.98. The proposed
replication and caching scheme was applied to cache
population at simulated time of reduced request
stream. The figures of the present paper, refer to a
typical 5-day run. Simulation runs where tested with
crossover probability 0.6 and mutation probability
0.0333. These probability values have been suggested
as a representative trial set for most GA optimizations
[9].

Fig 4. Cache hit rate over generations

Fig 5. Bytes hit length over generations

Fig 6. File type hit rates over generations

Figures 4, 5 and 6 depict the effect of the number of
generations to the cache metrics. More specifically,
Figure 4 presents the cache hit rate (percentage) for a
cache population being reproduced for 10, 20,…, 100

generations. The cache hit rate curves refer to caching
with replication and caching without replication. As
shown in Figure 4 the replication and caching scheme
is beneficial to the overall Web object access since it
results in increased cache hit rates. The support of
replication together with caching has its best
improvement (reaching 14 %) compared to the simple
caching when cache update evolves for 60 successive
generations. The two schemes seem to converge for a
quite small as well as for a quite large number of
generations. Figure 5 presents the Byte hit length (in
KBytes) for simulated runs of 10, 20, …, 100
generations. As shown in this figure, the two schemes
result in quite similar curve slopes with the
replication and caching overpassing the simple
caching scheme at almost 34% for various maximum
number of generations (e.g. 40, 80 generations).
These results emphasize the importance of adopting
the replication idea to the caching environment.
Figure 6 presents the file type hit curves for the same
numbers of 10, 20, …, 100 generation runs.Files are
categorized to html, gif, jpeg types which are the most
common in cache populations and all other types
include mostly plain/text files as well as application
files. These curves show that the log files include
mostly requests for gif and html files, whereas jpg
and other files are kept at similar lower rates.

6 Conclusions

The Web replication and caching problem is studied
under an evolutionary computational scheme based
on the genetic algorithm idea. The simulation process
included almost all of the necessary parameters to
study and validate the model, such that the most
indicative cache metrics (last modification factor,
cache length, actions and file types) are represented.
The model was tested with the use of real traces
provided by a Squid proxy cache server and certain
conclusions were pointed for the proposed scheme.
The replication and caching scheme has been proven
quite effective for cache populations evolved over the
simulation time under increasing numbers of
generations. The replication and caching has resulted
in beneficial cache hit rates with respect to maximum
generation number and crossover probability.

Acknowledgements
The author thanks Panayotis Tzounakis (System
administrator) and Savvas Anastasiades (technical
staff) of the Network Operation Center at the
Aristotle University, for providing access to the
Squid cache traces and trace log files.

References:
[1] M. Baentsch et al.: Enhancing the Web's Infrastructure:

From Caching to Replication, IEEE Internet
Computing, Vol.1, No.2, pp. 18-27, Mar-Apr 1997.

[2] P. Cao, J. Zhang and K. Beach: Active Cache :
Caching Dynamic Contents on the Web, Proceedings
of the IFIP International Conference on Distributed
Platforms and Open Distributed Processing , pp. 373-
388, Middleware 1998.

[3] A. Chankhunthod, P. Danzig and C. Neerdaels:A
Hierarchical Internet Object Cache, Proceedings of the
USENIX 1996 Annual Technical Conference, pp.153-
163, San Diego, California, Jan 1996.

[4] P. Danzig: NetCache Architecture and Deployment,
Proceedings of the 3rd International WWW Caching
Workshop, Manchester, England, Jun 1998.

[5] B. Dengiz, F. Atiparmak, A. E. Smith : Local Search
Genetic Algorithm for Optimization of Highly Reliable
Communications Networks, IEEE Transactions on
Evolutionary Computation, Vol.1, No. 3, pp. 179-188,
Aug 1997.

[6] R. Caceres, F. Douglis, A. Feldmann, C. Glass, M.
Rabinovich :Web Proxy Caching : The Devil is in the
Details, Proceedings of the SIGMETRICS Workshop
on Internet Server Performance, Jun 1998.

[7] R. Fieldings et al.: Hypertext Transfer Protocol
HTTP/1.1, HTTP Working Group Internet Draft,
August 1998.

[8] J. Gettys, T. Bl and H. F. Nielsen : Replication and
Caching Position Statement, W3C position statement,
http://www.w3.org/Propagation/, 1997.

[9] D. Goldberg: Genetic Algorithms in Search,
Optimization, and Machine Learning, Addison-
Wesley, 1989.

[10] J. Gwertzman and M. Seltzer: World Wide Web
Cache Consistency, Proceedings of the USENIX 1996
Annual Technical Conference, pp.141-151, San Diego,
California, Jan 1996.

[11] J. Martin : Web Replication and Caching (WREC) ,
Internet Engineering Task Force Working Group on
Web Replication and Caching, http://www.terena.nl/
tech/ wrec/, Dec 1998.

[12] Z. Michalewicz: Genetic Algorithms + Data
Structures = Evolutionary Programs, Springer Verlag,
New York, 1992.

[13] A Distributed Testbed for National Information
Provisioning, http://ircache.nlanr.net/, 1998.

[14] M. Nottingham: Web Caching Documentation,
http://mnot.cbd.net.au/cache_docs/, Nov 1998.

[15] O. Pearson: The Squid Cache software, Squid Users
Guide, http://www.auth.gr/ SquidUsers/, 1998.

[16] D. Povey and J. Harrison: A Distributed Internet
Object Cache, Proceedings of the 20th Australasian
Computer Science Conference, Sydney, Australia, Feb
1997.

[17] T. Starkweather, D. Whitley and K. Mathias:
Optimization Using Distributed Genetic Algorithms,
Parallel Problem Solving, Springer Verlag, 1991.

 [18] D. Wessels: Squid: Squid Internet Object Cache,
http://www.auth.gr/Squid/, 1998.

