
A Coordination Structure for a class
of Intelligent Machines

M.N.VARVATSOULAKIS
Electrical  & Computer Engineering Dept.
National Technical University of Athens

Zographou 15773-Athens
GREECE

G.N.SARIDIS
ECSE Department

Rensselaer Polytechnic Institute
Troy, NY 12180-3590

USA

P.N.PARASKEVOPOULOS
Electrical  & Computer Engineering Dept.
National  Technical University of Athens

Zographou 15773-Athens
GREECE

CSCC'99 Proc.pp.2181-2186

1

Abstract - In this paper we present a model for the
Coordination level of a class of Intelligent Machines
suitable for industrial applications. The Coordination
level is intended to translate a high-level command
into a schedule of low-level primitive activities. The
purpose of this model, based on the theory of
Hierarchically Intelligent Control Systems developed
by Saridis, is to specify the integration of the
individual efforts on task translation, task
coordination and task signaling of cooperating
systems that combine to form  an intelligent
machine.

1. Introduction
The theory of intelligent machines has been recently
reformulated to incorporate new architectures that are
using state machines to represent processes completed in
a fixed number of sequential steps. Intelligent machines
are based on the Principle of Decreasing Precision with
Increasing Intelligence to form an analytic methodology,
using Entropy as a measure of performance. The
original architecture proposed by Saridis represents a
three level system, according to the principle, including

Organization level, Coordination level and Execution
level [ Fig. 1 ].
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[ Fig. 1 Intelligent Machine Representation ]

The Organization level is intended to perform such
operations as planning and high level decision-making
and may require large quantities of information
processing but little or no precision.

The Coordination level is an intermediate structure
between the organization level and the execution level
with functions dominated by discrete event control that
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dispatch commands to devices and coordinate their
activities.

The Execution level consists of devices with high
requirements in precision having functions dominated by
classical control theory.

This hierarchical approach implies that the
Organization level represents abstract activities and it is
evident that the structure of the Coordination level
dispatcher designed to interpret the Organizer strings
and allocate commands among the coordinators is highly
dependent on the natural language representing the
sequence of  the planned tasks.

In the present work [18] a new structure for the
Coordination level is proposed, mainly oriented to
manufacturing applications. The model requires the
following capabilities:

• Task representation and processing ability which
classifies the tasks in an hierarchical manner by
defining initial, intermediate and final ones and in the
sequel selects the appropriate control procedures to
send as commands to the execution level.
• Learning ability which taking into account the
performance indices from the execution level improves
the task sequence selection by reducing uncertainties in
decision-making as more experience is obtained.
Previous research for the Coordination level has been

presented in [13], [14], [15], [16]. In [13] Saridis and
Graham propose the use of linguistic decision schemata
for the translation of a given input string to a set of
strings representing operating commands for hardware
devices. In [14], [15], [16] Wang extends this idea to
Petri-Net Transducers. These formalisms are intended
rather to produce commands, combining an input
language with output languages.

In the present work the finite state machine has been
selected as the basic construction module for the
proposed model, mainly oriented to produce appropriate
signals that are shared among different subsystems and
coordinate their operation.

The discrete event formalism is stated in Section 2. In
Section 3 the analytic model is established. Section 4
presents the learning methods. Section 5 applies the
theory presenting a model suitable for industrial
applications. Finally, Section 6 summarizes the work
and presents its major conclusions.

2. Preliminaries and Terminology
The Coordination level of intelligent machines serves as
an interface between the Organization level and the
Execution level and dispatches organizational tasks to
execution devices. An analytical model for this level
should comprise :

 -Formal definition of the subsystems and representation
of the processes within each one.
-Formal translation of the tasks issued by the
Organization level.
-Communication mechanisms between individual
subsystems and coordination of their activities.

The Finite State Machine Generator is the basic
structure for the proposed model, being appropriate for
the representation of tasks completed in a fixed number
of sequential steps. It can also serve all the previous
requirements and provide us a hierarchical, modular and
stepwise design approach.

The class of systems we consider is an extension of
non deterministic finite-state machine generators
following the framework of Ramadge-Wonham [8], [9].
A finite-state machine generator represents a discrete
event dynamic system that responds to generated
spontaneous events producing internal state transitions
and output symbols.

Definition 2.1. FSMG = (X, U, Y, f, g, X0, Xf) is a
finite-state machine generator [Fig. 2] where

X is the finite state set
U is the events alphabet
Y is the output alphabet
f : X x U→2X is the transition function
X0∈X is the  initial state
Xf⊆X is the set of marked states representing

completed or intermediate critical tasks
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[ Fig. 2 Finite State Machine Generator ]

The internal state transition can be achieved in either a
deterministic or a non deterministic fashion. In the
deterministic approach only one next state is defined
after the occurrence of one event. In the non
deterministic approach a fixed number of states are
prespecified and the selection is based on the current
status of the process.

Letting f be extended to a function f* : U* x X → X the
internal behavior of FSMG is described in terms of the
formal regular languages:
LX (FSMG) ⊆ U*:={u*∈U* | f *(u*, X0) is defined}
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i.e. the set of all finite traces of events accepted by
FSMG.

LXf(FSMG) ⊆ LX(FSMG):={u*∈LX(FSMG) |
f*(u*,X0)∈Xf} i.e. the set of all finite traces representing
completed tasks by FSMG.

In the linguistic decision approach, FSMG accepts
commands that consist of strings belonging to
LX(FSMG) or LXf(FSMG).

Let U* denote the set of all finite strings over U
including the empty string e. In this way let

h : U* →2Y be the output function

The behavior of the FSMG is stated as:

X(k+1) ∈ f (X(k), U(k))
Y(k+1) = h(U*(k)) if X(k+1) ∈ Xf

Here X(k+1)∈2X is the state after the k event, U(k)∈U
is the k event, U*(k) the sequence U(k)U(k-1)…U(0) of
events at the instance k and Y(k+1)∈2Y is  the produced
output symbols set when the string U*(k) processed by
FSMG represents a complete task.

 3. The analytic model
The Coordination level of the proposed model is
composed of one dispatcher, a fixed number of
coordinators and a communication bus for the exchange
of signals among them. In this coordination structure the
dispatcher occupies a dominant position in the
connection configuration. Each coordinator transmits
and receive signals via the communication bus and there
is no direct connection between individual coordinators.
In this way the dispatcher serves as both a task control
center and an information communication center.

The dispatcher receives the task commands from the
Organization level in the form of strings of finite length
and in the sequel signals the appropriate coordinators.
The functions of the dispatcher are defined to be task
translation, task coordination and task signaling.

The coordinators correspond to the subsystems
dedicated for the accomplishment of each process and
represent deterministic or non-deterministic task
sequences. In many instances of prespecified processes
it is necessary to enforce particular sequences that need
two or more coordinators synchronize their activities.

The dispatcher, modeled by a FSMG, accepts as input
the sequences of events from the Organizer and when
this sequence is complete, generates the output symbols
for the corresponding coordinators and sends them to the
communication bus [Fig.3]. Every output symbol in the

communication bus addresses only one coordinator i.e.
accessed by all coordinators but processed by the
corresponding coordinator.
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[ Fig. 3 Coordination Structure ]

The coordinators, modeled also by a FSMG, accept as
input the appropriate symbols in the communication bus
and start the task execution. In the sequel they follow
internal modeled transitions and, when they accomplish
predefined intermediate or final tasks, generate output
addressed symbols to the communication bus. The
output symbols may i)inform the dispatcher for the
completion of a task ii)signal another coordinator to
start or continue a task execution.

Every intermediate task in the coordinator is translated
to appropriate operating instruction required by the
appropriate execution devices in the Execution level.
The process of task translation is continued until the job
issued by the Organization level is completed.

Note that the coordinators have to cooperate under the
supervision of the dispatcher in the sense that none of
them has sufficient ability and information to
accomplish the entire task. Mutual sharing of
information is necessary to allow the dispatcher and the
coordinators, as a whole, to attack the requested job.

4. Learning
The task evolution when the transitions are deterministic
is achieved based on a combination of event symbol and
previous state. When the transitions are non-
deterministic a fixed number of options for a task are
prespecified and the objective is to select the optimal one
according to a measured performance index. We define
the following learning schemata based on special
problem complexity:
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Single-level Schema : Let m the number of options ui,
i=1,…, m and pi the subjective probabilities. The
decision making in the probabilistic model proceeds as
follows :

-A random performance index is associated with each
option ui. After the execution of the action update the
performance estimate using the formula :

)1k(J i + = )k(J i +
1k

1

+
( )k(JMRi - )k(J i )

where )k(JMRi  is the k measured performance index and

)k(J i the k performance index estimation.

-Next update the subjective probabilities by the
formula :

p i(k+1) = p i(k) + 
1k

1

+
 ( p - p i(k))

where p=1 if )k(J i =min )k(J i ,i=1,…,m and p=0

otherwise.

Multi-level Schema : If the non deterministic options
are represented as a Boltzman Machine of [Fig. 4] the
learning can proceed as follows :
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[ Fig. 4 Boltzman Machine Representation ]

A probability of activation is assigned to each node, a
weight for the transfer between nodes and the entropy
associated with it is calculated. In order to calculate the
total entropy of connections the following elements are
defined:

-The ordered set of levels L = ( li ), i=1,..,k is the set of
abstract primitive tasks of the machine and each one
contains a number nli, i=1,..,k of independent primitive
nodes.

-The set of nodes D = {d11, d12, …, d l nli i
}, i=1,..,k is

the task domain of the machine and each node represents
an individual task unit.

-The set Q = {q11, q12, …, ql nli i
}, i=1,..,k represent the

state of events associated with each node D. The random
variable q is binary (0,1) and indicates whether an event
is inactive or active in a particular task.

-The set of probabilities P = { p11, p12, …, pl nli i
},

i=1,..,k associated with the random variables q is
defined as follows:

P = { pij = Pr (qij = 1), i = 1, .., lk , j = 1, .., nli }
-The set of weights W = { wi j - i+1 k }, i=1,..,ln-1, j=1,

.., nli , k = 1, .., nli+1 associated with the interconnections
between nodes di j , di+1 k .

The probabilities and the weights are defined at the
beginning of the learning stage according to previous
experience.

The negative entropy in Shannon’s sense of transfer
dim to di+1j  is calculated in [17] as :

Hd dim i j+1
= -E[ln pd dim i j+1

] = adim
+ 

1

2
wd dim i j+1

pd im
pd i j+1

with a E a w p pd d d d d d
j

nl

im im im i j im i j

i

= = −
+ +

+

=
∑[ ] ln exp( )

1
2 1 1

1

1

The decision making is obtained by selecting the total
maximum negative entropy at every transition which
gives the optimum sequence of nodes to be selected. If
we define as S(f), f = 1,..,k the array containing the
selected nodes from each level the total maximum
entropy of knowledge flow after n ≤ k nodes is

∑
== ++++

+=
n

1i
ddddd

n,..,1f),f(S

* )ppw
2

1
a(max)n(H

)1f(S1i)f(Si)1f(S1i)f(Si)f(Si

The learning is obtained by feedback devices that
upgrade the probabilities and the weights by evaluating
the performance of the lower levels after each iteration.
The stochastic approximation reinforcement learning
scheme used in this work is an extension of the
algorithm proposed by Nicolic and Fu [5].

For every transition between nodes the performance
index
J td diS f i f( ) ( )

( )
+ +1S 1

is estimated according to:

J td diS f i S f( ) (
( )

+ +
+

1 1)
1 = J td diS f i f( ) ( )

( )
+ +1S 1

+

1
1t +

( J tMRd diS f i S f( ) (
( )

+ +
+

1 1)
1 - J td diS f i f( ) ( )

( )
+ +1S 1

) where

J tMRd diS f i S f( ) (
( )

+ +1 1)
is the t measured value of Jd diS f i S f( ) (+ +1 1)

and lim [ ( )]
( ) ( ( ) (t

MR d S dE J t J
iS f i S f iS f i S f → ∞ + + + +

=
1 1) 1 1)

.

To update the probabilities and the weights Fu’s
stochastic approximation reinforcement learning scheme
is also used:

pdiS(f)(t+1) = pdiS(f)(t) + 
1

1t +
 ( p - pdiS(f)(t))
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p di+1S(f+1)(t+1) = p di+1S(f+1)(t)

+ 
1

1t +
 ( p - p di+1S(f+1)(t))

w td diS f i S f( ) (
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+ +
+

1 1)
1 = w td diS f i S f( ) (

( )
+ +1 1)
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1

1t +
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)
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A Learning Index is defined in order to track
convergence of the algorithm during execution. The
maximum entropy of the selected sequence is obtained
when all probabilities and weights of its nodes are equal
to 1 and all the others are equal to 0. In this way

Hmax(n)= n
e nl e nl e nln

−
+ + − + − + −− − −1

2
1 1 11

2
1

3
1ln[( )( )...( )]

The Learning Index (LI) is defined as LI=
H n

H n
( )

( )max

and

according to Learning  lim
t

LI
 → ∞

=1  when the noise has

been eliminated by the cost estimates and the optimum
sequence is selected for a long number of continuous
iterations.

5. Application Study
The operation and control of large scale flexible
manufacturing systems is usually a difficult task
because it involves several control alternatives in order
to succeed an optimal policy. Such systems are very
complex and the efficiency of the dynamic models which
describe them is limited by the enormity of their
dimensions.

This application study involves a typical automated
scheduling process represented by a multi-level network
[Fig.5]. We have L = ( l1, l2, l3, l4, l5 ) and nl1= 1, nl2 =4,
nl3=6, nl4=4, nl5=1.

A. The Organization level

The Organization level produces strings of symbols
from the alphabet S={dij , i=1,...,5, j=1,…,nli}
corresponding to alternative operating plans. They are
generated by the grammar G=(N,S,P) where N={Ni ,
i=1,...,5} the set of non terminal symbols, S the set of
terminal symbols and P the set of production rules

generated by the recursive form P1→d11, Pi+1 → Pidi+1 j,
i=1,...,4, j=1,..., ,nli+1.
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[ Fig. 5 Multi-Level Network ]

B. The Dispatcher

The Dispatcher in the Coordination level is modeled by
a FSMG=(XD,UD,YD,fD,gD,X0D,XfD) where UD⊇S i.e.
inputs strings from the Organization level. When the
system reaches a state XD∈XfD the corresponding output
symbols for the coordinators are produced. After the
completion of a task the coordinator outputs symbols
y∈UD to inform the dispatcher. In this way the model
incorporates the logic of the Organization level as with
as additional low-level operating constraints between
subsystems. All the state transitions are deterministic
and no learning mechanism is defined.

C. The Coordinators

The Coordinators correspond to the levels of the
Organizer and each one represents alternative lower
level plans of the same task. They are modeled by
FSMGCi=(XCi,UCi,YCi,fCi,gCi,X0Ci,XfCi) where
YD= U Ci

i=1 5,...
U  i.e. input strings from the Dispatcher.

When the system reaches a state XCi∈XfCi the
corresponding output symbols for the Dispatcher are
produced i.e. YCi ∈UD. In this way the model
incorporates the logic for the cooperation of different
coordinators as with as additional internal operating
tasks in each subsystem.

Learning mechanisms are provided if the transitions
are non deterministic i.e. an optimal plan must be
selected according to observed uncertain data. If the
number of alternating plans is comparatively low the
selection is based on a Single-level Schema. If the
complexity of selection is represented as a multi-level
network where dynamic reconfiguration may be required
[17] the Multi-level Schema is more appropriate.
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6. Conclusions
The architecture described in this paper is based on the
architecture proposed by Saridis [2], [3], [14], [15],
[16], [17]. The details have been more specified and
more efficient internal structures have been used. This
coordination structure provides an analytical mechanism
of control and communication for autonomous
intelligent control systems in various fields of modern
industry. The task representation provides the base for
designing the task scheduling procedure and the learning
algorithm gives an adaptive approach for finding the
optimal operating schedules when the environment is
uncertain. This approach is more suitable to industrial
applications with fixed number of operating plans. The
main contribution is that this structure is well suited to
many existing industrial applications and is extremely
effective as compared to other architectures.

On-going research is trying to evaluate more
complicated structures and establish a unified approach
in dealing with discrete event control problems. Based
upon modern automated processes, like flexible
manufacturing systems, robotics and other advanced
automation systems simulation studies should test the
validity of the obtained results.
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