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Abstract: - The fundamental problem of selecting the order and identifying the parameters of an
AutoRegressive Moving Average model (ARMA) has been faced effectively, using the Multi Model
Partitioning (MMP) theory. The disadvantage of this method is the use of a fixed population of candidate
models. Depending on the a priori selection of the set of conditional models, this method gives (near) optimal
solutions. This disadvantage can be alleviated using natural selection techniques, such as the Genetic
Algorithms (GAs). Thus, a new Evolution Program (EP) is developed in this work. This method combines the
effectiveness of the MMP theory with the robustness of the GAs. Although the parameters' coding is more
complicated, simulation results show that the proposed algorithm succeeds better results compared to the
conventional one, since it has the ability to search the whole parameter space.
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1   Introduction
The adaptive filtering problem, with unknown time-
invariant or time-varying parameters, has been a
central issue in the field of signal processing. This is
due to the fact that adaptive techniques have found
applications in various fields and that the advances
in VLSI technology together with the decreasing
cost of hardware and digital signal processors have
made it possible to implement complex algorithms
at a reasonable cost. Selecting the correct order and
estimating the parameters of a system model is a
fundamental issue in linear prediction, system
identification and spectral analysis. The problem of
fitting an ARMA model to a given time series has
attracted much attention because it arises in a large
variety of applications, such as adaptive control,
speech analysis and synthesis, radar, sonar, etc.

Various methods that represent information
theoretic criteria exist for model order selection. The

most well known of the proposed solutions for this
problem include the Final Prediction Error (FPE),
Akaike's Information Criterion (AIC) [1]-[3] and the
Minimum Description Length (MDL) Criterion [4],
[5]. Usually, these methods are based on the
assumption that the data are Gaussian and they are
two-pass methods. Therefore, they cannot be used in
an on-line or adaptive fashion. A different adaptive
approach, based on the Partitioning Theorem, is the
Multi Model Adaptive Filter (MMAF) [6], that
operates on general, not necessarily Gaussian data
pdf's. The MMAF converges to the optimal solution,
if the model supporting the data is included to the
filter's bank. Otherwise, it converges to the closer
model by mean of the Kullback information
criterion minimization. This is due to the fact that
the number of filters used in the MMAF bank is
finite. Among the existing adaptive identification
methods, we are particularly interested in the
partitioned adaptive technique, since it is useful not



1952

only for identifying the noise statistics but also for
selecting the correct system order and estimating the
unknown system parameters. Pioneer work in this
area can be found in [7]-[9]. It is known that the
linear filtering problem with unknown time-
invariant or time-varying parameters reduces to a
non-linear filtering problem, which has major
difficulties in its realization. In particular, it is
extremely difficult to access the effect of
approximations made in the suboptimally realization
of non-linear filters. However, partitioned adaptive
filtering constitutes a partitioning of the original
non-linear filters into a bank or set of much simpler
linear elemental Kalman or Kalman-Busy filters.
This realization is very simple to implement
physically.

It is known that Genetic Algorithms (GAs) are
one of the best methods for searching and
optimization [12]-[16]. They apply genetic operators
(reproduction, crossover and mutation), in a
population of individuals (sets of unknown
parameters properly coded), in order to achieve the
optimum value of the fitness function. By evolving
the best individuals, in each generation, they
converge to the (near) optimal solution. The main
advantage of the GAs is that they use the
parameters’ values instead of the parameters
themselves. In this way they search the whole
parameter space.

In this work, a new Evolution Program which
combines the effectiveness of adaptive multi model
partitioning filters and GAs' robustness has been
developed. This method was first introduced in [17].
Specifically, the a posteriori probability that a
specific model, of a bank of the conditional models,
is the true model, can be used as fitness function for
the GA. In this way, the algorithm identifies the true
model even in the case where it is not included in
the filters' bank. It is clear that the evolution of the
population of the filter's bank improves the filter's
performance, since the algorithm can search the
whole parameter space. The method is not restricted
to the Gaussian case, it is applicable to on-
line/adaptive operation and is computationally
efficient. Furthermore, it can be realized in a parallel
processing fashion, a fact which make it amenable to
VLSI implementation.

The paper is organized as follows. In section 2
the ARMA model order selection  and identification
problem is stated. In sections 2.1 and 2.2 the
proposed method and the EP structure are presented
respectively. Section 3 contains the simulation
results, while section 4 summarizes the conclusions.

2   ARMA Model Order Selection
A general model for ARMA can be represented as
follows:

A(q)y(t)=B(q)e(t)     (1)

or
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where y(t) is the observed data, e(t) is a zero-mean
white noise process, with variance R, not necessarily
Gaussian,  n=(na,nb) is the order of the predictor and
ai (i=1,...,na), bj (j=1,...,nb) are the predictor
coefficients. Clearly the problem is two-fold: one
has both to select the order of the predictor and then
to compute the predictor coefficients. Of course the
most crucial part of the problem is the former.

Let us define the vector of coefficients θ(t) as
follows:

θ(t)=[a1(t) ... ( )a tna
 b1(t) ... ( )b tnb

]T    (3)

where 0≤t≤N ( N denotes the number of samples).
Notice that the coefficients ai and bj have been
replaced by ai(t) and bj(t) respectively to reflect the
possibility that the coefficients are subject to random
perturbations. This can be modeled by assuming
that:

θ(t+1)= θ(t)+w(t),  t=1,...,N (4)

where

w(t)=[w1(t) w2(t) ... ( )w tn na b+ ]

is a zero-mean white process, with variance  Q , not
necessarily Gaussian (e(t) and w(t) are assumed to
be independent). Equation (2) can be written in the
following form:

y(t)=hT(t)⋅θ(t)+e(t) (5)

where

hT=[y(t-1) ... y(t-na) e(t-1) ... e(t-nb)] (6)

The formulation of equations (4) and (5) are in the
standard space form, so that results of state space
estimation techniques can be readily used to
estimate the values of the θ(t)'s and can be found in
[10]. First of all, we have to assign values to the
variances of the processes w(k) and e(k), that can be
denoted by  Q and R respectively. Assessing the
values of Q and  R is not always an easy task. If R is
not readily obtainable, it can be estimated using a
technique described in [18]. The effect of estimating
R via this technique is investigated in [19]. Q can
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again be estimated using a technique described in
[18]. As far as the vector θ(t) is concerned, we
assume that an a-priori mean of the vector θ(0) can
be set to zero in the case that no knowledge about
their values is available before any measurements
are taken (the most likely case). On the other hand,
the usual choice of the initial variance of the vector
θ(t), denoted by P0 is P0=m⋅I, where m is a large
integer. Finally, we assume that the measurements
of y(t) and e(t) are set to zero for t<0
(prewindowing).

The ARMA model identification problem is now
stated. Given a set of observations y(t), where
0≤t≤N, from an unknown ARMA (na,nb) process we
have to determine the unknown parameter vector:

v=[na nb θ(t) Q R] (7)

Let us now assume that the order n, or the
parameters (na,nb), is unknown and the only
available knowledge about the true order is that it
satisfies the condition n0≤n≤nMAX. It is clear then
that the true model is one of a set of models
described by equations (4) and (5) and is specified
by the true value of parameters (na,nb). The problem
is then to select the correct model among various
candidate models. In other words, we have to design
an optimal
estimator (in the minimum variance sense), when
uncertainty is incorporated in the signal model. The
solution to this problem has been given by the multi
model partitioning theory [7]-[9], which is described
in the following.

The multi model partitioning algorithm operates
on the following discrete model:

θ(t+1)=F(t+1,1/n)⋅θ(t)+w(t) (8)

z(t)=hT(t/n)⋅θ(t)+e(t) (9)

where n=(na,nb) is the unknown model order,
assumed to be a random variable with known a-
priori pdf p(n/0)=p(n), and F(⋅) is the state transition
matrix. The optimal MMSE estimate of θ(t) is given
by:

( ) ( ) ( )$ $ / ; /θ θt t t n p n t dn
n

= ∫   (10)

where ( )$ / ;θ t t n  is the conditional MMSE state

vector estimate that is obtained by the corresponding
Kalman filter matched to the model with parameter
value n and initialized with initial conditions

( )$ / ;θ 0 0 n  and P(0/0;n). The model-conditional pdf

p(n/t) is given by:
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and

( ) ( ) ( ) ( ) ( )P t t n h t n P t n h t n R tz
T/ ; $ / / ; $ /− = +1 0    (13)

( ) ( ) ( ) ( ) ( )~ / ; $ / , / $ / ;z t t n z t h t n F t t n t t nT− = − + −1 1 1θ  (14)

( ) ( ) ( ) ( )[ ]$ ... / ... /h y t y t n e t n e t n nT
a b= − − − −1 1       (15)

( ) ( ) ( ) ( )e t n z t h t n t t nT/ $ / $ / ;= − −θ 1   (16)

Equations (8) and (9) pertain to the case where
n's pdf is continuous in n. When this is the case, one
is faced with the need for a nondenumerable infinity
of Kalman filters for the exact realization of the
optimal estimator. The usual approximation
performed to overcome this difficulty is to somehow
approximate  n 's pdf by a finite sum [8].
Fortunately, in our case the sample space is naturally
discrete, so that no approximations are necessary
and the estimator is indeed optimal. Since this is the
case, the integrals in (10) and (11) must be replaced
by summations running over all possible values of
n=(na,nb). If we rewrite equations (4) and (5) and
define the state vector as a vector containing all
model coefficients, then the model is easily
extended to the multivariate
case [11].

2.1 ARMA Model Order Selection Using
Evolutionary MMAF

In the ARMA model described at the previous
paragraphs there are two quantities which must be
estimated; the model order n and the unknown
parameter vector θ(t). The estimation method is the
MMAF as it is obtained from Lainiotis partition
theorem. Our goal is to achieve the optimal
estimation for both estimated quantities and
particularly for the model order n=(na,nb). The only
information we have for these parameters is that
they belong to a set or a space (finite or infinite). It
is obvious that if the unknown parameters belongs to
a finite-discrete set with small cardinality, the
MMAF is the only appropriate and most effective
method to estimate them. It is also widely known
that GAs perform better when the space which will
be searched has a large number of elements. So,
GAs can be used when the unknown parameters



1954

belong to a space with large cardinality or belong to
an infinite space or follow a probability distribution.
Then, we should optimize with GAs the model-
conditional pdf. That means that we have to
optimize the probability described from relation
(11), for discrete sample space, i.e. the following
probability function:

( ) ( )
( ) ( ) ( )p n t

L t t n

L t t n p n t
p n t

n

/
/ ;

/ ; /
/=

−
−

∑ 1
1   (17)

which will be the fitness function for the GA, for the
several values of the unknown parameters n=(na,nb)
and θ(t) underlying to the above constraints. The
structure of the system of the proposed solution is
shown in Fig. 1.
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Fig.1: The Structure of the Evolutionary MMAF
System
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Fig. 2: The first version of the EP

2.2 The Structure of the Evolution Program
The structure of the EP that has been developed has
two versions. First of all, we must state that we use
two different representations, binary and integer, for
the possible solutions. According to the first version
(Fig. 2), we first make an initial population of m
pairs of integers each of them representing a
possible value of the ARMA model order. For each
population of possible solutions we apply an MMAF
and have as result the model-conditional pdf. This is
the fitness of each possible solution. According to
the second version (Fig. 3), we first make an initial
population of s vectors of m pairs of integers (each
pair representing a possible value of the ARMA
model order). For each such vector we apply a
MMAF and have as result the model-conditional pdf
of each value. The biggest pdf is the fitness of each
vector.

For both versions since we have the fitness of
each possible solution (or vector of possible
solutions) we are able to perform the other genetic
operators, i.e. reproduction, crossover and mutation.
The reproduction operator is the classic biased
roulette wheel selection according to the fitness
function value of each possible solution (or vector of
possible solutions). As far as crossover is concerned,
we use four crossover operators for the binary
representation (Uniform Crossover, Even-Odd
Crossover, One-Point Crossover, Two-Point
Crossover) and four crossover operators for the
integer representation (Uniform Crossover, Blend
Crossover, Arithmetic Crossover, Neighbor
Crossover-a new crossover operator implemented,
giving new integer values near the old ones).
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Fig. 3: The second version of the EP

Finally, we use one mutation operator for binary
representation (Flip Mutator) and two mutation
operators for integer representation (Flip Mutator,
Gaussian Mutator). Every new generation of
possible solutions (or vectors of possible solutions)
iterates the same process as the old ones and all this
process may be repeated as many generations as we
desire or till the fitness function has value 1 (one)
which is the maximum value it is able to have as a
probability[17].

The first version results to a final population of
pairs of integers always containing the true order of
the ARMA model. The second version results to a
vector of pairs of integers having the best model-
conditional pdf always containing the true order of
the ARMA model. After that, the estimation of θ(t),
for both the EP's versions, is straightforward using
the conventional MMAF.

3   Experimental Results
The presented algorithm has been run extensively on
several simulation experiments. All experiments
were carried out 100 times (100 Monte Carlo runs).
In this section, two examples are discussed. On both
examples, the true order ni=( nai

, nbi
) of each

ARMA model satisfies the conditions 1≤ nai
≤64

and 1≤ nbi
≤64. We also assume, R=1, Q=0.01,

P(0/0;n)=100 and F(t+1,t/n)=1.
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Fig. 4: The evolution of the A Posteriori
Probabilities of the best genome (1st version of the
EP, 1st example) compared to the conventional
MMAF.

For the first example, the data generating process
at time instant t=0, is given by:

y(t)=1.8y(t-1)-0.9y(t-2)+0.4e(t-1)-0.8e(t-2)+e(t)

For the second example, the process model
changes during the operation and is given by:

a) for the first 400 samples at time instant t=0:

y(t)=1.8y(t-1)-0.9y(t-2)+0.4e(t-1)-0.8e(t-2)+e(t)

b) for the last 600 samples at time instant t=400:

y(t)=1.5y(t-1)-1.4y(t-2)+0.8y(t-3)+0.7e(t-1)
  -1.1e(t-2)-2.3e(t-3)+1.5e(t-4)+e(t)

The size of the population we used in both our
examples was 10, the crossover probability was 0.95
and the mutation probability was 0.15. Also, the
number of Kalman filters in the MMAF was 10 and
for every generation of the GA the MMAF was
applied for 50 runs.

The presented results in Fig. 4 show the
evolution of the model-conditional pdf of the best
genome (first version of the EP) for the first
example, compared to the conventional MMAF.
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Fig. 5: The evolution of the A Posteriori
Probabilities of the best genome (2nd version of the
EP, 1st example) compared to the conventional
MMAF.

The presented results in Fig. 5 show the
evolution of the model-conditional pdf of the best
genome (second version of the EP) for the first
example for Q=0.001, compared to the conventional
MMAF.

The presented results in Fig. 6 show the
evolution of the model-conditional pdf of the best
genome (second version of the EP) for the first
example for Q=0.01, compared to the conventional
MMAF.

The presented results in Fig. 7 show the
evolution of the model-conditional pdf of the best
genome (second version of the EP) for the second
example for Q=0.001, compared to the conventional
MMAF.

Furthermore, according to all experiments' results
the following conclusions were come to:
• As the population size grows the first version of

the EP converges faster giving a model-
conditional pdf higher than 0.99.

• As the population size grows the second version
of the EP converges faster giving a model-
conditional pdf higher than 0.999.

• The crossover probability must be higher than
0.9 for both versions in order to identify the true
order of the system model.

• The mutation probability must be higher than
0.05 and smaller than 0.2 for the first example
and higher than 0.1 and smaller than 0.25 for the
second example for both versions in order to
identify the true order of the system model.
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Fig. 6: The evolution of the A Posteriori
Probabilities of the best genome (2nd version of the
EP, 1st example) compared to the conventional
MMAF.

 
• The ratio between the population size and the

size of the domain set, for the first version, must
be at least 1/16 in order to identify the true order
of the system model.

• The ratio between the size of the genome of pairs
of integers and the size of the domain set, for the
second version, must be at least 1/16 in order to
identify the true order of the system model.

• As far as crossover operators are concerned,
faster convergence is reached by using the
Uniform Crossover, for binary representation,
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and Neighbor Crossover, for integer
representation.

• As far as mutation operators are concerned, faster
convergence is reached by using the Flip
Mutator, for binary representation, and Gaussian
Mutator, for integer representation.
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Fig. 7: The evolution of the A Posteriori
Probabilities of the best genome (2nd version of the
EP, 2nd example) compared to the conventional
MMAF.

4   Summary
In this work, a new evolutionary method for
adaptive estimation of ARMA discrete time systems,
with unknown order and parameters, has been
proposed. The method combines the well known
Adaptive Multi Model Partitioning theory with the
effectiveness of the GAs. Simulation results show
that the method performs significally better than the
conventional MMAF. Although the parameters'
coding is more complicated a variety of defined
crossover and mutation operators was investigated,
resulting in accelerations of the algorithms
convergence. Furthermore, the evolution of the
initial population results to the identification of the

true model, even in the case where it is not included
in the initial population of the filter's bank. Finally,
the method can be implemented in a parallel
environment, since the MMAF as well as the GA are
naturally parallel structured, thus increasing the
computational speed.
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