
Robust path planning of a mobile robot
in the space of sensor information

A. ATASSI, A. PRUSKI.
Laboratoire d’automatique des systèmes coopératifs (LASC),

Université de Metz,
Ile du Saulcy, BP80794, 57012 Metz,

FRANCE.

 Abstract: This paper introduces a new approach to robust path planning for mobile robots. This approach is
entirely based on ultrasonic sensors information, and avoids the use of odometry, which leads to the
accumulation of errors resulting from the calculation of the robot position. We have proceeded as follows: For
each segment of obstacle detected by the mobile robot sensors, we create a free space region. A node graph is
used to represent the regions with their links. With this graph as a basis, we use a planning algorithm which
chooses the required path. The final stage consists in finding for the robot motion a robust control, as regards the
environment model errors (uncertainties). This approach could contribute in practise to a control system for
indoor robot motion, which offers increased accuracy to an economical ultrasound device.

Key-Words:-path planning, sensor signal, robust control, environment model. Proc.pp..1941-1947

1 Introduction
 Path planning is a fundamental domain of mobile
robotics. Many results have been obtained in this
field, most of which were focused on the search of
collision free path between obstacles, that may
connect the initial and final configuration of the robot.
The methods used in this field require a full and
accurate knowledge of the robot’s environment, and a
perfect control of the robot. Since this technique
cannot avoid the accumulation of a large number of
uncertainties, exteroceptive sensors (ultrasonic or
laser) [1,2] are often used to minimize these
uncertainties.
 Several sensor based methods have already
contributed to major improvements in path planning.
 Among them, the Laugier approach [4,5], which is
simple and has the distinctive feature of privileging
contacts between the robot and its environment with
the purpose of reducing the position uncertainty of the
vehicle.
 The Alami method [6], like Laugier’s one, deals
equally with the uncertainties at both the control level
and the perceptual level. The motion control is
defined in the Alami approach by means of four
control primitives. It allows a simple connection
(interface) between the planner and the execution
control.
 The sensory uncertainty field method of Takeda &
Latombe [3] takes explicitly into account the

uncertainty problems at the robot’s navigation stage.
Given a model of the robot’s environment, a Sensory
Uncertainty Field (SUF) is precomputed over the
collision-free subset of the robot’s configuration
space. The robot being at a given position, the SUF
estimates, for every configuration of the subset, the
distribution of possible errors (resulting from the
environment modeling) in the robot configuration
which has been computed by the sensors. The planner
uses the SUF to generate paths that minimize
expected errors, by crossing areas of the workspace
where environment features are visible.
 In [7,8], the authors use a task functions’ planner
for mobile robots. For each configuration of the free
space, an uncertainty field CUP (Configuration
Uncertainty Potential), and a list of environment’s
primitives are associated. Based on the CUP, the
planner generates a path which realizes a compromise
between the path length, the simplicity of the vehicle
control, and the security conditions. Then a sequence
of local roadmaps representing the hole set of
primitives is introduced. At each local roadmap, the
planner of task functions is associated with a nominal
path, and with a mechanism of regulation (with
feedback).
 Our approach consists in planning the robot
trajectory in a robust manner, as a direct result of
sensors information. When the robot detects segments
of obstacles, it receives a signal for each of these
segments. For each segment of obstacles, we

associate a trapezium shaped region, within which the
robot detects the corresponding segment. New regions
are then created further to the intersections of the
trapeziums. In each of these regions the robot detects
a specific information from obstacles. A node graph
is used to establish the different links between these
regions. The links are realized according to the sensor
information change from one region to another. To
move the robot from an initial position to a final one,
plenty of trajectories are considered. Depending on an
optimality criteria, which take into account a given
path’s robustness, an algorithm will be used to
determine the most adequate path. We have chosen
the exhaustive algorithm of Dijkstra [1,9], which
permits to resolve a path search problem by
developing a set of nodes. We have chosen this
method since, in contrast to the A* algorithm [1], it
does not use heuristic functions. Finally, we have
chosen a control in order to move the robot from one
region to another.

2 Environment modeling
 The environment modeling consists in creating, in
free space, regions representing one or more sensor
information. The environment is formed by a set of
polygonal obstacles, and the robot has at its disposal
a telemetric rotary sensor with infinite angles of
measure. For simplicity, we will consider that the
robot is reduced to point A on fig.1. The sensors
information are represented in fig.1 by the angles
between the positions of measure and axis x starting
from the point of origin A.

 A o x

Fig.1 represents the distances between the robot and a
segment of obstacle according to the positions of

measure.

2.1 Representation of sensor signal
 The relationship between a measure of the distance
robot-obstacle, and between the orientation to which
the measure is undertaken, is represented by the
equation:

L = Lo \ (cos(- o)) (1)

Lo being the position of measure, which is
perpendicular to the segment of obstacle i. e. the
nearest distance between the robot and the segment.

o being the angle between the position of measure Lo

and x axis of the reference frame.
 We notice that function L tends towards infinity,
when tends towards o + \2 or towards o - \2.
To obtain a finite and bounded function, we take the
inverse of distance L, and we obtain the following
function :

d = 1\L = cos(- o)\ Lo

for o- \2 < < o+ \2 (2)
Otherwise d = 0.

In the following figure, we have represented function
d() by a sinusoidal shaped signal.

 d()

 o
Fig. 2 Representation of signal d()

with a maximum for = o.

 We define by dm the maximal distance at which the
robot can identify a segment of obstacle. Starting
from signal d() and from dm we can determine region
tr, within which the robot can detect this segment at
any location.
If we are dealing with several segments, and by
calling the segments detected by the robot s1, s2, ...,
sn, we will obtain respectively for these segments the
signals d1(), d2(),, dn(). If there is no
intersection between segments, then the global
function becomes :

d() = d1() + d2() + ... + dn() (3)

In case 2 signals d1() and d2() interfere (intersection
between 2 segments), then the resulting function will
be :

dr = max(d1() , d2()) for 1 < < 2 (4)

Fig.3 represents several signals
 with interference

 The sensors information will be defined by the
angles o1, o2, ..., on that correspond to the
maximum of the signals d1(), d2(), ..., dn().
 Before defining the various regions originated from
the sensors information, it would be interesting to
review the functioning method of two kinds of
sensors: the ultrasonic and the laser range :

 The laser sends a beam vs, that will be reflected
against the segment of obstacle’s plan. The beam
will return to its transmitting source, provided the
angle between the position of the transmitter and
the segment of obstacle’s plan, where the
reflection occurs, doesn’t exceed a threshold s.
Otherwise, the beam will diverge and will be
completely lost by the sensor. In this case, we
wouldn’t obtain any information on the segment
of obstacle.

 If an ultrasonic sensor is used, it will send a
transmitting cone with an opening angle ‘s. The
ultrasonic sensor will then detect any segments of
obstacles or parts of segments, which happen to
be inside the transmitting cone.

We notice that both types of sensors acquire the same
information when ‘s = s.
 If we do not take into account the maximum
reflection angle s of the laser sensor’s beam vs, the
region tr will have a rectangular shape, which
dimensions are dm.ls, ls representing the length of the
obstacle segment associated with this region.
Otherwise, if s 0, then the signal obtained for a
segment will be truncated at both ends. (Refer to
fig.4). We obtain the following relations:

d= 1\L = 1\Lo.cos(- o) (5)
for o- s < < o+ s.
d = 0 otherwise.

 d()

 o

Fig. 4 Representation of signal d()
with a reflection s.

2.2 Representation of the model regions
 Taking into account angle s, the region tr will
expand in the two opposite sides of the rectangles
(along sides dm), increasing by two angular sections,
each with radius dm and angle s (as shown in fig.5).

Fig. 5 Representation of a region where
the robot detects an obstacle segment

 The resulting zone is not polygonal, since it is
curved in two locations (e3e’3 and e4e’4). To simplify
matters, we prolong line e3e4 (which is parallel to
obstacle segment e1e2) on both sides, until it
intersects with lines e1e’3 and e2e’4. In this way, we
obtain a new region tr that has an exact trapezium
shape.
 In order to improve the robot detection, the distance
dm between robot and segment must be shortened, and
a maximum security margin distance is required.
Since we intend to keep distance dm at a reduced size
and the security margin high, the errors resulting from
simplifying region tr will remain negligible.
 For each obstacle segment, we associate a
trapezium which contains the information on its
segment. We will have as many trapeziums as there
are segments. When two trapeziums intersect, the
robot will detect the two corresponding segments, in
the intersecting area.
 In order to obtain maximum robustness during the
control application for planning, we will consider that
the robot moves from one region to another by

changing one single sensor information, i. e. by
adding or removing one single sensor information.
 If we divide the union of two trapeziums A1 A2 (
representing the union operator) in three sections, we
have:
 A1\A2 (\ represents A1 without A2).
 A1 A2 (represents the intersection operator

between the first and the second element).
 A2\A1 (A2 without A1).

 Since region A1\A2 belongs to trapezium A1, the
robot detects the same information as in A1, i. e. angle

o1 at the peak of signal d1().
 In the same way, since A2\A1 is included in region
A2, the robot detects the same information as in A2, i.
e. angle o2 at the peak of the signal d2().
 Section A1 A2 belongs to both regions A1 and A2,
so that the robot will detect the two information
related respectively to regions A1 and A2, which are
angles o1 and o2.

 A1 A2

Fig. 6 Representation of the intersection
between two regions A1 and A2

 We notice that section A1 A2 gives one additional
information to the ones given by the two sections
A1\A2 and A2\A1, which means that one information
change has occurred between A1 A2 and the two
other sections. It follows that the robot can directly
pass from region A1 A2 to the two other regions and
vice versa. Region A1 A2 will serve as intermediary
for the passage of the robot from region A1\A2 to
region A2\A1, and inversely.
 If we take into account all the regions issued from
the intersections between the different trapeziums, it
will become necessary to use a node graph to
represent the various regions created and their links.
This will be subject of next chapter.

3 Graph Computation
 The node graph construction is based on the links
between the regions. A link between two regions is

established when an information change between
these two regions has occurred. We can eventually
increase the number of links by changing (increasing)
the length dm of the trapezium. The graph
construction will serve to find all possible paths
between regions, and may also serve as a step for
searching the best robot’s trajectory.
 Before defining the graph construction’s algorithm,
it will be interesting to determine the complexity of
the number of region’s , i.e. the maximum number of
regions created according to the number of obstacle
segments. The complexity is in fact a sum of
combinations, defined by :

Rm = C1
m + C2

m + ... + Cj
m + ...+ Cm

m (6)
with Cj

m = m! \ (m-j)! \ j!

C1
m representing the number of regions that belong

only to one trapezium, i.e. the regions which have
only one information.
Cj

m representing the number of regions issued from
the intersections of a number j of trapeziums, or that
belong to j trapeziums. they have therefore j
information.
Cm

m representing one single region issued from the
intersections between all the trapeziums.
 We designate a number m of trapeziums by A1, A2,
..., Am. We check whether an intersection between A1

and A2 exist. If this is the case, then region A1 will be
divided in two sections A1\A2 and A1 A2, and we
obtain in addition the part of section A2 that does not
belong to A1, A2\A1. This translates into :

2*1(two sections of A1) + 1(A2\ A1) = 3regions.
 If region A3 intersects respectively with these three
regions, then each of these will be divided again in
two new subsections. A seventh region will be
constituted by the portion of section A3 that does not
belong to A1 and A2, which translates into :

2*3(all A1 A2 subsections) + 1(A3\ (A1 A2)) =
7regions.

 We notice that each time a trapezium intersects
with a region, the number of new regions is multiplied
by two and increased by one. If this statement is
applied to a number m of trapeziums, we will have :

Rm = 2m - 1 (7)

 We can see that the complexity increases very
quickly (exponentially), depending on the number of
segments. It is however proven in practice that
matters are much less complex, which can be
explained as follows:

 The probability that a region belongs
simultaneously to m trapeziums decreases when m
increases. In this case, this region will be the mth’s
subdivision of the set of trapeziums and will be
sufficiently small to be neglected, if m represents a
large figure.

 It is uncommon, in practice, that a region belongs
to more then three trapeziums. A large number of
regions do not have more than one or two
intersections with other trapeziums, while some do
not have any.

 We conceive the node graph in light of these
considerations. The graph is composed of a set of
summits (nodes) and arcs. Summits represent regions,
while arcs represent the links existing between
regions. A link is established between two regions,
each time the robot goes through a change of sensor
information, i. e. when it crosses from one region to
another.
 Links between two regions are reciprocal : if the
robot is able to cross from region A1 to A2, it can also
cross back from region A2 to A1. The graph (and the
arcs) is therefore not oriented. There is no difference
between an arc’s origin and its extremity, since the
two summits, which are connected to this arc, point
towards each other. Two coupled summits form a
loop.
 For the data-processing representation of the
graphs, we have chosen the structure of lists’
representation, since it is the most suitable to our
study. The graph construction is realized by means of
an algorithm that uses chained nodes (structures)
lists.
 Let ListTrap indicate the list representing
trapeziums A1 to Am, and let I be a variable indicating
the serial number of trapeziums under treatment.(I’s
initial value is 2, and is incremented by 1 with each
new treatment) We also initialize the A1\A2 and
A1 A2 links.
 The algorithm consists in building regions in three
steps:
 The first step consists in placing, in the graph

GraphDiff, AI\AI-1, which is the exclusion between
the AI and AI-1 elements of ListTrap. We keep the
same links as those of the I-1th treatment.

 The second step consists in placing, in the graph
GraphAnd, AI AI-1, which is the intersection
between the AI and the AI-1 of ListTrap. Again, we
keep the same links as those of the I-1th treatment.

 The third step consists in calculating an element of
exclusion X, which has to be calculated separately
from the two preceding lists. In other words, it

consists in calculating the exclusion between
ListTrap’s Ith element and the union of it’s
preceding elements (A1 to AI-1), i. e. AI \ (AI-1\ (...
\ A1))).

 After each treatment (each time I is incremented by
1), the GraphAnd list is connected to the GraphDiff
list, and the excluded element X is inserted at the end
of GraphAnd.
The GraphDiff list is serial numbered from 1 to (2I-1 -
1), the GraphAnd list from 2I-1 to (2I -2) and the
excluded element X will be to 2I -1.
Let J and k represent variables indicating the
respective serial numbers of the new regions created
by trapeziums’ intersections.
With each treatment, the following will be carried out
:
 between GraphDiff and GraphAnd, for (j=1 to

j=2I-1 -1), a link between the Jth and the (J+ 2I-1 -
1)th elements will be established.

 between GraphAnd and excluded element X, for
(k=1 to k=I-2), links are established between
element X and the (2I-1 -1 + 20)th element, between
X and the (2I-1 -1 + 20 + 21)th element, ... ,and
between X and the (2I-1 -1 + 20 + 21 + ... + 2k)th

element.
 The same operation is carried out until ListTrap’s
last element. Regions with one single information will
have at most m-1 elements, while regions with more
information will have at most m links.
 Once the graph construction has taken place,
several potential paths between regions become
available. We will have to select those responding
best to the optimal criteria.

4 Optimality criteria
 The selection of the most suitable path is attained
by applying an optimal criteria, which is based on the
search of the most robust path.
 The most robust path is the one with the least
number of sensor information changes. Since a
change of sensor information occurs each time the
robot crosses from one region to another, the optimal
path will correspond to that involving the least
number of regions crossed. The selected algorithm
does not use heuristic functions, as is the case for A*
algorithm.

(a)

(b)

Fig.7 Example of path planning (grey) in the
presence of rectangle (a) and polygonal (b)

obstacles

5 Control
 Once the graph is built and the optimal path
determined, it becomes necessary to apply a control,
in order to move the robot from one region to another.
 The vehicle is maintained at a constant speed, and a
control is applied on the vehicle’s orientation. The
control equation will be :

e d d
à

d(() '())
2

(8)

 d() represents the model (signal) seen on fig. 1 that
we wish to obtain on the obstacle segment, and d’(-

d) the signal obtained from the sensors on this
segment. and d correspond respectively to the
orientation of the segment and the robot with respect
to the global reference (x-axis reference). e represents
the sum of differences between signals d() and d’(-

d) for 0 < < 2 . To obtain d, we proceed with the
calculation of the sum of products between d() and
d’(- d) such as d gives :

Pc = Max(((). '())d d
à

d

2

) (9)

 To cross from one region to another, the robot
might either move away from the segment and cross
to another region when it stops detecting the segment,
or move towards the segment, detect it and enter into
a new region.

6 Application

(a)

(b)

Fig. 8 Path planning (a) and execution (b)
for the passage of doors

 Fig.8 (a) and (b) give an example of path planning
and execution for the crossing of doors.
Fig.8(a) illustrates the path planning of the robot in
the environment’s model.
Fig.8(b) illustrates the path execution of the robot in
the real environment.
 The robot in the real environment crosses the
second door to the left of the corridor (Fig.8b), as
indicated by the model’s grey colour path (Fig.8a). It
shows the robustness of the control, as regards the
errors of the model when, in the real environment, the
corridor is longer than defined in the model of the
environment.

7 Conclusion
 In this article, we have proposed a new method for
trajectory planning. The main interest of this method
is in the proposed control, which is able to determine
the robot orientation at each moment. This allows the
robot to locate itself(or identify it's own position) with
respect to a local referential (the region in which he
is located). Since the robot orientation is permanently
calculated, out of the measures obtained by the
ultrasound sensor, the orientation calculation errors
do not accumulate. since we are not using odometry,

i.e. not calculating the position of the robot, we are
avoiding the uncertainties (errors) deriving from the
robot position calculations, and thus increasing the
control accuracy.
 The practical application of this method is also
offering several advantages: Ultra sound detectors are
less accurate than camera and laser sensors,
(although ultrasound detectors have a greater
scanning field than lasers), but are more economical
and of easier utilisation. Our method, contributes in
increasing the economical advantage of ultrasound
detection, since odometry would be no longer needed.

References

[1] J. C. Latombe, Robot Motion Planning. Boston,
MA : Kluwer Academic Publishers, 1991.
[2] J. C. Latombe, A. Lazanas and S. Shekhar,
« Robot motion planning with uncertainty in control
and sensing, » Artificial Intell. J., vol. 52, no. 1, pp.
1-47, 1991.
[3] H. Takeda, C. Facchinetti and J. C. Latombe,
« Planning the Motions of a Mobile Robot in a
Sensory Uncertainty Field, » IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. 16,
no. 10, October 1994.
[4] Christian Laugier. Planning Fine Motion
Strategies by Reasoning in the Contact Space. In
IEEE International Conference on Robotics and
Automation, pages 653-659, 1989.
[5] F. De La Rosa, J. Najera and C. Laugier,
Planning robot motion strategies under geometric
constraints, in : Proc. Int. Symp. On Intelligent Robot
Systems (SIRS’94) pages 37-44,1994.
[6] R. Alami and T. Simeon. Planning Robust Motion
Strategies for a Mobile Robot. In the IEEE
International Conference on Robotics and
Automation, 2 :1312-1318, San Diego, USA - May
1994.
[7] I. Collin, D. Meizel, N. L. Fort and G. Govaert.
Local Map Design and Task Function Planning for
Mobile Robots, Proceedings of the International
Symposium on Intelligent Robotic Systems IRS’94,
pp. 22-29, Grenoble, 1994.
[8] N. Le Fort-Piat, I. Collin and D. Meizel. Planning
robust displacement missions by means of robot-tasks
and local maps, Robotics and Autonomous Systems
20, pages 99-114, April 1997.
[9] Alain Pruski, Robotique Mobile, Hermès France
1996.

