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Abstract:- We present a real time algorithm for computing the orientation and the lateral pose of a

vehicle with respect to the road observed by an on-board video camera. The advantage of this approach

is to provide robust measures when lane-markings are dash, partially missing, perturbed by shadows,

highlights, other vehicles, and noise. Moreover, a calibrated camera may be used as well a uncalibrated

camera.

Robustness to intensity perturbations is obtained, as much as possible, by taking into account all the

edges in each image without doing any a priori thresholding based on the gray-level amplitudes. This

leads to numerous edges to be processed. Nevertheless, we propose an algorithm extracting straight

line segments directly in gray-level images in less than 0.05 second for a 256x256 image on a Pentium

200Mhz.

For robust estimates of the orientation and of the lateral pose under geometric perturbations such as

missing data, the algorithm relies on few basic assumptions on the observed cues: aligned and straight

cues. Moreover, we assume that the road pro�le is changing slowly from one frame to another.

The orientation of the vehicle with respect to the road is computed by estimating the position of

the focus points of the markers along the line of horizon. From the extracted straight line segments,

the algorithm builds an histogram which represents the current lateral road pro�le. The relative lateral

pose of the vehicle is obtained by comparing the lateral pro�le of the current road to a reference lateral

road pro�le. Using the consistency over time of the lateral road pro�le, the reference is updated. Initial

reference is built during the initialization of the process when the vehicle is assumed well enough aligned

with the road.

In the proposed approach, if lane-markings are missing, estimated orientation and pose can still be

computed using the other cues seen in the scene such as cues from side-walks, road shoulders, herb-

sides, and guard rails. This allows us lateral guidance without explicit recognition of the left and right

lane-markings as it is usually proposed.

First experiments on real images show correct estimations in presence of dash lane-markings, missing

markers, highlights, shadows, curves, and noise. The whole process can run typically at a rate from 5

to 15 images per second, and the obtained measures can be used for helping the driver in the lateral

guidance of its vehicle, in case of uncontrolled lane departure for instance. This system may help toward

a solution of major security problems of road tra�c, such as obstacle detection near the vehicle.

Key-Words:- Pattern Analysis and Machine Intelligence, Computer Vision, Image Processing, Projective

Geometry, Real Time Systems, Feature Extraction, Edge and Line detection, Identi�cation, Tracking,

Applications to Vehicle Guidance.



1 Introduction
An e�cient lane-markings detector is of impor-

tance for vehicle guidance. Lane-markings de-

tection can be used for helping the driver in the

lateral guidance of its vehicle, for instance. In

case of an uncontrolled lane departure, an alarm

may be sent to the driver or an automatic brak-

ing/steering may be applied onto the vehicle.

For lateral vehicle guidance, lane-markings de-

tection must at least provide estimates of the rel-

ative orientation and of the lateral position of the

vehicle with respect to the road. The accuracy

of the estimated values is also required. The pro-

cess must be in real time, i.e, at a rate of at least

5 images per second, for a correct control of the

vehicle at a speed of 30 m/s.

Automatic vehicle guidance has been a subject

of investigations from many years [2, 4], but un-

til now, to our knowledge, there is no technique

tackling the problem of partially missing lane-

markings which is of importance for real data ap-

plication where lane-markings may be dash, hid-

den by shadows, highlights, and vehicles. There-

fore, we propose a technique which focuses on ro-

bustness to missing data.

We �rst describe our geometric assumptions

about the lane-markings the system has to de-

tect for lateral guidance of a vehicle, in section 2.

This model allows us to detect lane-markings by

processing each image in real time. Then, we

explain the temporal assumption about the road

lateral pro�le evolution for dealing with pertur-

bations. The proposed image process consists in

three steps. First, we describe in section 3 our fast

straight line segment detector. Second, the focus

point, and thus the orientation of the vehicle with

respect to the road, is estimated (section 4). Fi-

nally, the road pro�le is computed and the pose

of the car with respect to the lane-markings is

obtained (section 5).

2 Road Lane-markings Model
We chose to base our approach on a minimal num-

ber of assumptions, and thus to use simple geo-

metric cues. Indeed, we expect to have a better

control of the algorithm by minimizing the num-

ber of controlling parameters. This is important

for experimental validations.

The interesting markers for lateral guidance

of a vehicle on a road are the continuous and

dash horizontal lane-markings. The orientation

and the lateral pose of the vehicle have to be es-

timated only with respect to the lane-markings

near the vehicle. This leads to detect markers by

using straight line segment cues in the images.

The boundary of the markers are straight lines

on the road with a good approximation depending

on:

� the considered lane length,

� the altitude variations of the road,

� and the maximum curvature of the road.

The chosen cues for describing markers on the

road does not contain any information about the

width of the markers, and the distance between

the lane-markings. Indeed, depending on the

road type and on the road section these features

may vary. We did not assume any a priori val-

ues for these parameters, but they are assumed

to change slowly. The previous assumption is

valid most of the time, but not for certain spe-

ci�c road con�gurations such as lane crossing,

and lane merging. In such cases, the proposed

algorithm is not able to provide a correct lateral

pose. But the orientation and the time update

of the lateral pose is still obtained allowing us to

perform adaptive lateral control in this degraded

mode.

The previous assumption of consistency over

time is needed to improve the robustness of the

lane detection in front of the following di�culties:

� dash lane-markings and missing data,

� perturbations in the drawing of the lane-

markings boundary,

� additive edges due to highlights and shad-

ows.

This constraint allows us to dynamically build

the lateral pro�le of the road, i.e, the represen-

tation of how cues are distributed along a cross



section of the road. This last is used for estimat-

ing the relative lateral position of the vehicle with

respect a reference lateral road pro�le.

3 Straight Line Segment Detec-

tor
Straight line segments are chosen as features. Ex-

tracting straight line segments from an image may

be a time consuming task. We design a fast algo-

rithm (typically 0.05 second on an image) without

any pre-processing on the gray-level image.

3.1 Edgel

(a) (b) (c)

(d) (e) (f)

Figure 1: (a) original image of a marker perturbed

by highlights, results of Canny-Deriche edge detector

with a 1 pixel size smoothing: (b) no threshold on the

gradient magnitude and (c) 40 gray levels threshold.

On the second line, results of the line segment detector

for di�erent values of the minimal length: (d) 4 pixels,

(e) 15 pixels and (f) 20 pixels.

Most of the edge-detectors algorithm involve (at

least) a smoothing and a threshold steps [6]. Both

steps perform a selection on the edgels, and there-

fore on the remaining information:

Smoothing: It removes from the image small

details created by noise. Since, the chosen �lter-

ing is often linear, a small detail is a reduced set

of pixels with low gray-level amplitude. Informa-

tion on intensity and spatial size is thus merged.

As a consequence, the selection is harder on low-

contrast zones. For example, we show in Fig. 1

(b) or (c), a Canny-Deriche edge detector [3] ap-

plied on an image of an highlighted white marker.

The magnitude of the gradient along the shadow

is so strong that the smoothing removes one edge

of the marker we want to detect. Ideally, the

smoothing should be tuned to remove only what

can be attributed to noise.

Thresholding: it discards low contrasted

edgels, which again involves an selection based

on gray-level amplitudes. Choosing the adequate

threshold is a di�cult issue since as noticed in [6],

\The resulting edge quality varies greatly with the

choice of parameters". No thresholding seems

better that a not fully justi�ed selection on gray-

level amplitudes when lightening conditions are

under control.

If we remove the gray-level smoothing and

threshold steps as much as possible, edgels in

images are numerous, and thus a criterion for

selecting the edgels of interest is required (see

Fig. 1(d)(e)(f)). We based this selection on ge-

ometrical features. We believe this is a better

alternative than a selection based on gray-level

amplitudes, as illustrated in Fig. 2.

3.2 Straight Line Segments of Edgels

(a) (b)

(c) (d)

Figure 2: (a) the original image and the result of

the line segment detector for di�erent values of the

minimal length (b) 8 pixels, (c) 16 pixels and (d) 32

pixels.

We propose to de�ne edges as the set of all the

level lines of the image. As de�ned in [5], we call

level line the boundary of a level set L�, the set of

pixels having an intensity larger or equal to �. Of

course, another kind of edges may be used (e.g.

lines given by the zero crossing of the Laplacian).

The important thing, at this point, is to avoid, as



much as possible, a selection based on gray-level

amplitudes.

Due to image grid, there is only 8 possible local

directions for edgels. These directions are coded

by a number between 0 and 7, the well known

Freeman codes. The list of directions of these

connected edgels is the so-called chain code.

Di�erent algorithms has been proposed for rec-

ognizing when a chain code of a list of connected

edgels is a straight line or not [7]. Any of these

algorithms allows us to construct a tree of the

whole possible straight line chain codes up to a

speci�ed length N . Due to the �
4 symmetry of the

process, Freeman [7] shows that at most two basic

directions are present in the chain code and these

can di�er only by unity, modulo 8. Thus this tree

is a binary tree and the size of this tree is rela-

tively small. Moreover, from [1], we know that

an asymptotic estimate of the number of straight

chain codes of length N is N3

�2
.

After building this tree, a very fast algorithm

for following connected straight segments of edges

can be implemented. Given a starting edgel, the

edge line is followed until we stand on a straight

line. This detection is repeated until all the

straight line segments are extracted in the image.

Figure 3: Extracted straight line segments. Line seg-

ments with a slope closed to horizontal are discarded.

In the framework of our application, line seg-

ments closed to horizontal are discarded for im-

proving the speed of the detector. Segments far

from the vehicle are also discarded as shown in

Fig. 3. This enforces the assumption of straight

lane-markings in case of a curve of the road.

4 Orientation of the Vehicle
The next step in the processing is to estimate the

focus point of the markers and other cues.

(a) (b)

Figure 4: (a) the up-side-down histogram displays the

accumulated lengths of the line segments crossing the

line of horizon. The used line segments are shown

in Fig. 3. The line of horizon and the focus point

are shown. (b) the histogram displays the accumulated

lengths of the line segment crossing a vertical line go-

ing through the focus point. The median and extent of

both histograms are displayed with lines.

The observed road is assumed planar and the

camera has no roll angle with respect to the road.

Therefore, the transformation between the road

plane (x�; y�) and the image plane (x; y) is:

x = lx
x�

y�
(1)

y = ly
1

y�
(2)

where lx and ly are only functions of the camera

calibration parameters. In (1) and (2), we set

the origin of the image coordinate system to the

center of the line of horizon (see Fig. 4(a)). Since

lane-markings edges are parallel straight lines on

the road plane, the lines converge in the image

to a point on the line of horizon. It is the focus

point.

From (1), we deduce that the position of the

focus point along the line of horizon is linearly

related to the tangeante of the angle between the

camera axis and the lane-markings. Similarly

from (2), the elevation of the line of horizon is

linearly related to the slope of the observed road.

Experimentally on real images, it turns out

that the position of the focus point on the line of

horizon is more accurately estimated than the el-

evation of the horizon. Hopefully, contrary to the

orientation of the vehicle, the slope of the road

varies very slowly. Therefore, elevations of hori-

zon are averaged along several frames for robust

estimates.



Knowing the elevation of the line of horizon,

the compute the histogram of the accumulated

lengths of the line segments crossing the line of

horizon. This is fast to compute. As shown

in Fig. 4(a), this histogram consists mainly in a

shape with a unique mode, and can be seen as

the probability density of presence of the focus

point along the line of horizon. Its median is a

robust estimate of the focus position. Its extent

estimates the accuracy of the obtained position.

Since the angle between the lane-markings and

the vehicle is directly related to the position of

the focus point, there is no need to recognize

each marker separately. Therefore, using the fo-

cus point allows us to estimate the orientation

of the vehicle even if no white line markings are

present. Indeed, any other line cues such as side-

walks, herb-sides, guard rails are contributing to

this estimate.

Then another histogram is build by crossing

the extracted segments with a vertical line going

toward the focus position. A typical example of

this kind of histogram is shown is Fig. 4(b). As

previously, the median and the size of the mode

are used to update the estimate of the horizon

elevation.

5 Lateral Pose of the Vehicle
For computing the lateral pose of the vehicle, pre-

vious algorithms are usually based on recognition

of the left and right lane-markings. The di�culty

is that the width of the markers and the distance

between the lane-markings varies from one road

to another. Even more di�cult, one marker may

be missing in several frames and thus confused to

another closed markers. We propose an approach

taking advantage of that the lateral pose of the

vehicle may be estimated without recognition of

the lane-markings.

From the ratio of (2) and (1), we deduce that

the arc-tangeante of the angle of the image of a

line segment is linearly related to lateral position

of the line segment on the road. Thus, the his-

togram of the accumulated lengths of segments

as a function of the arc-tangeante of their an-

gles is linearly related to the road pro�le. The

Figure 5: The histogram displays the accumulated

lengths of the line segments with respect to their an-

gles. Used line segments converge to the focus point.

road pro�le is a kind of summary of the position

of the observed markers and other cues along a

road section. For example in Fig. 5, each mode

corresponds to one lane-marking as displayed by

the arrows.

Figure 6: Evolution along time of the road pro�le.

In Fig. 6, each line is an lateral pro�le. Dif-

ferent kinds of markings may be detected along

time. Due to the a�ne mapping the lateral po-

sition of the vehicle is the relative translation

of this histogram. Given a reference histogram

and from the current histogram, the current lat-

eral pose error may be estimated using a cross-

correlation technique for instance. A more sophis-

ticated technique doing histogram mode match-

ing by dynamic programming may be also used

to allow small variations of the marker positions.

At the initialization of the lateral control pro-

cess, the vehicle is assumed in the right position.

At this time, the reference road pro�le is com-

puted. Then the algorithm continually estimates

the alignment error between the vehicle and the

road by computing the error of alignment between

the current and reference histograms. Moreover,

the reference histogram is dynamically updated

with an exponential averaging of the new road

pro�le after alignment (usually the averaging is

on 300 frames). Without camera calibration the



error of lateral pose and orientation are known

up to a scale factor. Therefore, the lateral con-

trol may be performed with as well as without

camera calibration.

6 Experiments

Figure 7: Main lane-markings detected in presence

of perturbations such as missing data, shadows, high-

lights, road curves.

In Fig. 7, the main white lane-markers is correctly

posed and oriented despite the various perturba-

tions. Size of the images is 256x256. Typical

computation time on a Pentium 200Mhz, 32Mo

is 0.05 second for straight line segment detection

(keeping only these that are at least 8 pixels long),

and 0.02 second for the focus and lateral pose es-

timation.
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Figure 8: Estimated angle (in pixels) and lateral pose

of the vehicle (in meters/10).

For testing how reliable is the estimated orien-

tation and pose, we run experiments on sequences

of synthetic images where true values are known.

In Fig. 8, the estimated angle has to be compared

with constant zero value. The true pose is zero

during 50 frames and then increases linearly dur-

ing the last 450 frames as it can be seen in Fig. 8.

The standard deviation of the angle is 1.1 pixels

(0.2 degree) and 1.5 cm.

7 Conclusion
We proposed an e�cient technique for computing

the orientation and the lateral pose of a vehicle

with respect to the observed road. The orienta-

tion is computed by estimating the position of the

focus points of the markers and other cues along

the line of horizon. The relative lateral pose of

the vehicle is obtained by comparing the current

road pro�le to a reference lateral pro�le of the

road. This reference pro�le is dynamically up-

dated. The main advantage of this technique is

to provide robust measures when lane-markings

are partially missing, dash, perturbed by shad-

ows, highlights, missing data, and noise. This

real time algorithm is based on a fast straight

line segment detector in gray-level images (from

5 to 15 frames per second). Extensions of this

system for curved road is under investigation.

E�cient lane-markings detection systems can

help toward a solution of major security problems

of road tra�c, such as obstacle detection near the

vehicle.
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