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1 Introduction
Secure voice and data systems have been of much
interest to commercial and military users since the
advent of modern communications. The basic
drawbacks of early implementations, however, were
their large size, difficulty of use, and excessive cost.
This was a direct result of the limitations imposed by
hardware based architectures performing the variety of
complex processing functions of a secure
communications system.

The current standard architecture of a digital secure
voice and data system is shown on Figure 1. The major
system functions, i.e., voice coding, encryption and
decryption, cryptographic key management, and
system control, are all implemented using distinct
hardware modules. As shown on Figure 1, the analog
voice signal of the speaker Si(t) is converted to its
digital form Si(nTs) which is then compressed by
employing some voice coding technique
(VOCODER). The most effective voice compression
techniques are based on Linear Predictive Coding
(LPC) that converts the incoming voice samples from
a bit rate of 64 kbps to 2.4 kbps, 4.8 kbps or 9.6 kbps.
The compressed voice samples Po(nTb) are transferred
to the encryption module and the encrypted samples
Eo(nTb) are transmitted to the communications
medium.

Similarly, secure data operation is achieved by
encrypting the computer data Di(nTb). Finally, the
Key Management Module of Figure 1 is required to
ensure that the encryption and decryption algorithms
operate with the same cryptographic key, thus making
the secure communication feasible.

Recent developments in the performance of Digital
Signal Processing (DSP) microprocessors allow new
system architectures to be deployed. These
architectures could benefit from the high
computational power of DSP microprocessors to offer
low cost, integrated, flexible solutions to an old

problem. (Early implementations could occupy a
whole room full of hardware).

2 Voice Coding
The voice technology backbone used in secure voice
communications systems is based on Linear Predictive
Coding (LPC) techniques [1]. This is so since LPC
based voice coding achieves low bit rates and high
voice intelligibility. High voice compression (2.4 kbps,
4.8 kbps, 9.6 kbps) is achieved by collecting voice
samples, creating speech frames, and then processing
these frames as shown in Figure 2.

The analysis procedure is initiated by sampling that
converts the speaker's voice to a digital signal. This
signal is conditioned by the Preemphasis Filter so that
energy is allocated equally in the low and high
frequency components of the voice signal. At the
output of this filter, the voice coder of Figure 2
generates a 10th order digital filter for every speech
frame (usually 22.5 msec in duration). This filter
consists of ten (10) coefficients, called Reflection
Coefficients.

The most critical phase in speech analysis is Pitch
estimation, and a variety of Pitch trackers have been
proposed, such as the Gold-Rabiner Pitch Tracker, the
Autocorrelation Pitch Tracker, the AMDF, and others
[2]. Since the Pitch information is found at the low
frequencies of the voice signal, the digitised speech is
low-pass filtered (see Figure 2). Also, the energy level
at the output of this low-pass filter is used to
characterise each speech frame as voiced or unvoiced.

All information derived for every speech frame is
converted to a predetermined format by the Coding
Block of Figure 2. The output of this Coding Block is
the digital compressed voice ready for encryption.
On the receiving side, all parameters of every speech
frame, i.e., Pitch, Energy, Reflection Coefficients,
Voice/Unvoiced indicator, are used for the digital
synthesis of the voice signal.
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Figure 1: Secure Voice and Data System Architecture

3 Data Encryption
Encryption refers to hiding information during
transmission, thus making this information
unintelligible to all but its intended recipient. The
messages to be encrypted, known as plaintext, are
modified by the Encryption/Decryption Module in a
unique way determined by a cryptographic key shared
between the parties that wish to communicate in
privacy. The output of the encryption process, known
as the ciphertext, is then transmitted to the intended
recipient. The basic idea behind any encryption
technique is that an intruder does not know the
cryptographic key, and thus, cannot decrypt the
ciphertext and reconstruct the original information.

In general, there are two types of encryption
algorithms, Stream Cipher and Block Cipher [3].
Stream Cipher algorithms operate on the plaintext a bit
at a time. Block Cipher algorithms process   plaintext a
block at a time.   A typical  block Cipher encryption
algorithm is the Data Encryption Standard (DES). The
DES has been specified by the National Bureau of
Standards (Now NIST) and has been adopted as an
ISO standard [4].

In this cryptosystem, plaintext information is divided
into blocks which are then operated upon
independently to generate a sequence of ciphertext
blocks. The basic idea behind DES is to build a strong
system out of simple, individually weak, components.

The DES cryptosystem is based on a system of
transpositions and permutations. The permutation box,
or P-box, is used to transpose, or map a sequence of
input values to another sequence of values of the same
length. Substitutions are performed by what is called
S-boxes.

A combination of the S-boxes and P-boxes can be
viewed as a decoder/coder operation, where the output
is simply a linear mapping of the input values. Each
combination of the S-box and P-box comprises a
single weak component of the algorithm. By including
a sufficiently large number of stages in the product
cipher, the output can be made to be a non-linear
function of the input.

Plaintext is encrypted in blocks of 64 bits, yielding 64
bits of ciphertext. The DES algorithm, uses a 56 bit
key, and has 19 distinct stages. The first stage is a  key
independent permutation on the 64 bits of the
plaintext. The last stage is an exact inverse of this
permutation. The stage prior to the last one exchanges
the left most 32 bits with the right most 32 bits. The
remaining 16 stages are functionally identical but are
transformed by different functions of the key. This
algorithm has been designed to allow decryption to use
the same flow as encryption. That is, for decryption
the steps are simply run in the reverse order of
encryption.
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Figure 2: Speech Analysis Signal Processing

The operation of one of these intermediate stages is as
follows. At each stage, the 32 bit input is transformed
with a function of the encryption key and produces
two 32 bit outputs. The left output is simply a copy of
the right input. The right output is the bitwise
Exclusive OR of the left input and a function of the
key at that stage, Ki. All the complexity of the DES
algorithm lies in this function.

It is interesting to note that in each of the intermediate
16 stages, a different key is used. Before the algorithm
starts, a 56 bit transposition is applied to the key. Just
before each stage the key is split into two 28 bit
sections, each of which is rotated to the left by a
number of bits which depends on the stage number. Ki
is derived from this through another 56 bit
transposition to it.

4 Cryptographic Key Management and
Public Key Cryptography
In a single key cryptosystem, the key used for
encryption must be used for decryption as well.
Therefore, the parties that wish to establish a secure
connection must have agreed upon the cryptographic
key beforehand. If this key is somehow  compromised,
the whole system is rendered useless. Clearly, key
distribution is a critical concern. The traditional
method of key distribution has been through use of
couriers and secure mail. Without  entering into a
discussion of ethics associated  with this approach,
security is based upon loyalty and honesty. With some
minor modifications, this traditional approach is still

used by  most  commercially  available  secure
communications systems.

To circumvent the problems associated with the
manual key distribution, Public Key cryptography was
developed [5,6]. Unlike single-key cryptosystems
where the same key is used for encryption and
decryption, Public Key cryptography is based on a
two-key solution: an encryption key and a decryption
key. The novelty of this technology is that knowledge
of the encryption key reveals no information about the
decryption key.

The user of a Public Key cryptosystem keeps the
decryption key secret and makes the encryption key
available to everybody (hence the name Public Key).
When one wishes to send secure information, one
encrypts the information using this public encryption
key. From that moment, the only person who can
decrypt this information is the intended recipient, i.e.,
the user of the Public Key cryptosystem who holds the
corresponding secret decryption key. Therefore, the
Public Key cryptosystem can be used as an electronic
courier to exchange session keys. The basics for
implementing this key exchange are discussed later.

To successfully address the major problem
encountered in conventional single-key cryptosystems
like DES, i.e., setting up secure connection between
users that have never previously communicated, Diffie
and Hellman proposed a cryptographic system with an
encryption algorithm, E, and a decryption algorithm,
D, with the following requirements:



1. D(E(M)) = M.
2. It is exceedingly difficult to deduce D from E.
3. E cannot be broken by a chosen plaintext attack.

Under these conditions there is no reason why E
cannot be made public, hence the name Public Key
Cryptography. A general description of a typical
approach is discussed next.

The plaintext, regarded as a bit string, is divided into
blocks. Each plaintext  message, M is represented as
an integer between 0 and n-1. The message is
encrypted by raising the plaintext message to the eth

power modulo n. In other words, the ciphertext, C, is
the remainder of Me/n.

Decrypting the ciphertext and recovering the original
plaintext message, M, is accomplished by raising it to
the dth power modulo n. The encryption and
decryption algorithms, E and D respectively, satisfy
requirement 1 above as follows:

• C ≡ E(M) ≡ Me (mod n), and
• M ≡ D(M) ≡ Cd (mod n).

An examination of the above relationships reveals that
the encryption key is the pair of positive numbers (e,
n), and the decryption key is (d, n). The encryption key
is made public by the user and the decryption key is
kept secret. The encryption and decryption keys are
computed as follows.

First, two large random prime numbers p and q are
generated. The product of these two numbers forms
the modulo which is made public, but the factors p and
q are kept secret. The security of this algorithm
depends on the enormous difficulty associated with
factoring n. If the cryptanalyst could factor n, which is
kept public, he could find p and q and decipher any
message encrypted with the key. Fortunately
mathematicians have been trying to factor large
numbers for over 300 years without success [7].

Testing a number for primality could be implemented
by employing a probabilistic algorithm due to Solovay
and Strassen [8]. A random number a is chosen from a
uniform distribution on {1, ..., b-1} and the following
test is performed:

• gcd (a,b) = 1, and
• J<a,b>  ≡  a(b-1)/2 (mod b),

where J<.> stands for the Jacobi symbol. If for several
values of a the above relationship is satisfied, then b
is almost certainly prime. Each repetition of this
algorithm for different values of ' a  ' has a 50%
chance of failure. This probability should be viewed as

"if  b is a composite number then this algorithm will
definitely fail, whereas, there is a 50% chance that b
may be prime". Clearly such a test must be
implemented many times to ensure an accurate result.

The decryption key, d, is chosen to be a large random
number which is prime with respect to (p-1)(q-1), i.e.,
gcd (d, (p-1)(q-1)) = 1.

The encryption key, e, is computed from p, q, and d to
be the multiplicative inverse of d modulo (p-1)(q-1),
i.e., exd=1 (mod(p-1)(q-1)).

A mathematical proof that the encryption and
decryption algorithms work, given that the keys are
generated properly, is given in [6].

Given the state of the art in computing machinery and
state of technology, what level of difficulty is
associated with breaking  this algorithm. Consider an
implementation with a modulo of 512 binary digits,
equivalent to a decimal number which has
approximately 154

decimal digits or 10154. For comparison purposes the
total number of atoms in the known universe is
estimated to be approximately 1080.

The fastest known factoring algorithm is due to
Richard Schroeppel, which can factor n in
approximately:

10(sqr(ln(n)*ln(ln(n))))

steps. Using this method and assuming that each
operation takes 1 ìs we get approximately 3x1031

years to factor n (there are approximately
31,556,952,000,000 ìs per year), thus satisfying
requirements 2 and 3 above.

5 Digital Signal Processing Based
System Architecture
The proposed system implements all signal processing
functions by employing the architecture shown on
Figure 3. The Computational Module implements the
processing functions, i.e., system management,
Vocoding, cryptographic key management and
Encryption/Decryption. This module consists of a
high-speed (12 MIPS and above) DSP microprocessor,
called the Processing Unit, and two memory banks, a
fast one, and a slow one.

5.1 Off-Line System Operation
This mode of operation is entered at the beginning of
every secure voice or data communication to establish
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Figure 3: Integrated Secure Digital Voice and Data System

common cryptographic keys for the encryption and
decryption processes. In this mode, the Public Key
cryptosystem is used as an electronic courier to
exchange session keys. The basics of this key
exchange are as follows. First, each system provides
the other with its own public encryption key. Then,
each system utilising its Random Key Generator (see
Figure 3), generates a random session key to be used
later for encrypting voice and data information. To
complete a security level connection, these session
keys must be exchanged between the two systems. To
do so, each system encrypts its session key using the
public encryption key that was just received from the
remote unit. This encrypted information is sent back
and each system, using its secret decryption key,
recovers the session key of the other. Thus, the session
keys are safely exchanged and a secure
communications channel is established. Then, the
systems switch to the faster DES cryptosystem.

5.2 On-Line System Operation

On-Line is the real time operating mode of the system
that implements the Vocoding and data encryption
functions. In this mode, the Processing Unit collects
voice samples and constructs speech frames. Every
such frame corresponds to 22.5 msec of speech, i.e.,
180 voice samples, and while the samples of one
frame are collected in buffer I1 of Figure 3, the
Processing Unit is processing the previous frame.
Buffer B1 is used by the Processing Unit to store the
compressed voice samples, i.e., for a 2.4 kbps Vocoder
each uncompressed voice frame in buffer I1 is
represented by 54 bits in buffer B1, 53 of which

contain voice information and one bit is used to
maintain frame synchronisation. Then, the data of
buffer B1 are encrypted and transferred to buffer O1
and from there to the communications device.

In the opposite direction, the compressed and
encrypted voice data are transferred from the
communications device to buffer I2. From there, they
are decrypted and stored in buffer B2, one decryption
frame at a time. The digital synthesis of the voice
samples is implemented by the Processing Unit that
reads the data of buffer B2, synthesises, and stores the
uncompressed voice samples in the output buffer O2, a
frame at a time.

The overall system operates with two basic
frequencies. The first, fs=1/Ts, determines the data
transfer between the A/D, D/A Converter Module and
the Computational Module. The second, fb=1/Tb,
determines the data transfer rate between the
Computational Module and the communications
device and, in case of data encryption, the data transfer
rate between the computer data port and the
Computational Module.

The frequency fs , used only for secure voice
operation, is determined by the Nyquist criterion and is
a function of the bandwidth of the voice signal. For
narrowband voice with 3.2 kHz bandwidth, fs= 8 kHz.
The communications frequency fb is determined by
the Vocoder data rate and the speed of the
communications device, i.e., 2.4 kbps or 4.8 kbps or
9.6 kbps.
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The operation of the overall system is interrupt driven.
The two frequencies, fs and fb, are used to generate these
interrupts to the Processing Unit. For every interrupt
generated with frequency fs, the Processing Unit
executes the following functions:

(a) Reads a digital voice sample Si(nTs) from the A/D
converter and transfers it to buffer I1.

(b) Writes a sample of synthetic speech So(nTs), if
available, from buffer O2 to the D/A converter.

Additionally, for every interrupt generated with
frequency fb, the Processing Unit executes the following
functions:

(a) In case of secure data operation, it transfers an
input data sample Di(nTb) from the computer data
port to buffer B1, and a decrypted data sample
Do(nTb), if available, from buffer B2 to the
computer data port.

(b) Transfers an encrypted data sample Eo(nTb), if
available, from buffer O1 to the communications
device, and reads a received encrypted data sample
Ei(nTb), if available, from the communications
device into buffer I2.

When the Processing Unit is not executing one of the
above interrupts, it performs the following functions:

(a) In case of secure voice operation, it analyses
speech using the data stored in buffer I1, and
synthesises digital speech using the compressed
voice samples available in buffer B2.

(b) Data encryption of the compressed voice or data
samples stored in buffer B1, and decryption of the
encrypted data stored in buffer I2.

The architecture described above increases the security
of the overall system since the data transferred to the
communications device are definitely encrypted. This is
not the case in conventional architectures which employ
separate computational modules for the encryption,
Vocoding, and system control functions (see Figure 1).
This is so, since an accidental or intentional (tampering)
malfunction of the System Control Module could result
in unencrypted data to be transferred to the
communications device and transmitted to the
communications medium.

6 System Design and Implementation
6.1 Hardware Design
The backbone of the proposed architecture shown in
Figure 4 is a high-speed DSP, such as the Texas
Instruments TMS320C25 that can execute 12 MIPS. The
system also comprises of some peripheral blocks, i.e., the
communications module, the A/D, D/A module, and the
interface to the control panel, the system display,  the
random number generator, and the Tamper and Auto-
Zero switches. The USART of Figure 4 allows for both
synchronous and asynchronous communications



protocols to be used between the DSP and the modem or
DSP and the computer data port. In the design shown in
Figure 4, the DSP based Central Processing Unit is
supported by the necessary memories, 16Kx16 high-
speed static RAM and 32KX16 low-speed EPROM. The
high-speed memory is used for program execution and
data buffering, as described earlier. The low-speed
EPROM memory is used for storage of look-up tables
and executable code. Upon  power-up, portions of this
code are transferred to the high-speed memory for
execution (Cache memory). The A/D and D/A
conversions are implemented by a single chip codec like
the TCM2916. Voice samples transferred between the
codec and the DSP are ì-law or á-law compressed, thus
allowing 8 bit samples to have a 13 bit dynamic range.
Decompression of these samples is implemented by the
DSP software with the use of look-up tables.   An
important design issue is to avoid data buffer overflows.
This is achieved by using the same clock source for the
A/D conversions as well as for data transmission to the
communications medium. Alternatively, a slightly slower
A/D conversion rate and data filling by the USART
could be employed. Finally, the I/O Interface hardware
involves the use of decoding logic and bi-directional
buffers, all of which can be implemented in a single
VLSI chip.
6.2 System Software
The software design is based on the real-time Kernel
software which is used to handle and prioritise all system
interrupts. In the off-line mode of operation interrupts are
generated from the system interface (I/O), while in the
on-line mode of operation from the A/D and D/A
conversions module, the communications module, and
the system interface.
The major software tasks in the off-line mode of
operation are the system interface monitoring and the
cryptographic key management. The system interface
software utilises wait-states and executes from the slow
EPROM memories, while the computationally intensive
key management routines are transferred to the fast
SRAMs for execution. Cryptographic key management
consists of two major software modules. The encryption
and decryption routines, and the cryptographic key
generation routines. Encryption and decryption is
executed with every secure communication since an
encryption of the local random session key and a
decryption of the remote system's session key are
required. Their implementation consumes approximately
1 K words of memory on the TMS320C25, and their
execution approximately 9 secs. Most of this execution
time (90%) is allocated to the decryption process and
more specifically to the (a*b)mod(c) calculation. The
new cryptographic key generation routines are required
to compute a new set of Public Keys: (e,n) and (d,n).
Their implementation consumes approximately 2.5 K
words of TMS320C25 memory.

Their execution time varies from a few seconds to over
half an hour, depending on how quickly the random
numbers generated by the noise generator meet the
primality criteria.
   In the on-line mode of operation the
compression/decompression of the voice samples
exchanged between the DSP and the codec, the speech
analysis and synthesis, the encryption/ decryption, and
the system interface (I/O) monitoring are implemented.
Among these tasks the most computationally intensive is
the speech analysis and synthesis, utilising
approximately 80% of the system's computational power.
The DES based 64 bit block encryption and decryption
utilises less than 8% of the processor's computational
capacity at the speed of 2.4 kbps. In terms of program
space requirements, speech analysis requires 3.3 K
words, speech synthesis 3 K words, and DES
encryption/decryption  1.5 K words.
An important design consideration is to avoid overflow
of the circular system buffers shown in Figure 3.
Considering that every speech frame is 180 samples,
buffers I1 and O2 are set to 518 words each. Also, since
every DES encryption block is 64 bits, buffers B1, O1,
I2, and B2 are set to 128 words each. Finally, it is
important to note that the DES mode of operation
implemented in the commercial version of SecLine-Plus
is the Output Block Feedback (OFB) mode. This mode
offers increased immunity to bit errors likely to occur in
the noisy communications channel (telephone lines). To
ensure that a unique Initial Value (IV) is used with every
encryption block, a 64 bit counter with a random starting
value is used.

7 Conclusion
A single microprocessor chip approach to secure voice
and data communications systems has been presented.
This architecture offers increased security, ease to future
upgrades (modification of encryption algorithms),
reduced system size, lower power consumption and cost.
All this is achieved at the expense of increased software
complexity which, however, can be accommodated by
the high power DSPs available today.
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