Use of criteria of class validity with the Possibilistic C Means algorithm
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Abstract : - In this paper we propose to apply on possibilistic partitions, the calculus of the criteria of class
validity usually used on fuzzy partitions. After some recalls on the Fuzzy C Means and Possibilistic C Means
algorithms, we compute these criteria for four types of data including difficulties which are currently seen in
classification. The results obtained by the Fuzzy C Means algorithm are compared with those given by the

possibilistic algorithm.
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1 Introduction

Fuzzy clustering algorithms are used to divide a set
of points into a known number of classes [10]. Some
criteria allow to validate the obtained partition. They
can be used on successive partitions that include an
increasing number of classes. In which case they
help to find the number of classes giving the best
partition as for hard classification methods [8].

The criteria are often used with the Fuzzy C
Means algorithm. Experiments have shown that the
results are not always in accordance with the visual
distribution of points. We propose to extend the
application of these criteria to the Possibilistic C
Means algorithm. In this paper we will compare the
performances of these criteria when applied to
partitions coming from Fuzzy and Possibilistic C
Means.

2 Fuzzy C Means and Possibilistic C
Means algorithms

2.1 Fuzzy C Means algorithm

Studied essentially by Bezdeck [1] this unsupervised
classification method uses as a basic principle the
formation from non labeled samples, of a number ¢
of groups. Classes must contain as similar samples
as possible, while samples of different groups must
be as dissimilar as possible. This is rendered into
least square criteria minimization:
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Matrix U and V are respectively the membership
matrix and the matrix of the centroids of the classes.
The element u; is the membership degree of the
point j to the class i. The term dj; is the distance from
point x; to centroid V;. The obtained classes have
spherical shapes when the euclidean distance is used
and an elliptical shape when the Mahalanobis
distance is used. The variable m is the fuzzyfication
degree which takes its values in the interval [1,+o0[.
We have used the value m=2 recommended in [4].
Figure 1 presents the algorithm we used.

For class i, the membership degree of sample x
and centroid V; are given by the following
expressions :
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The algorithm stops when the partition becomes
stable that is to say when it does no longer evolve
between two successive iterations :
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g is the convergence threshold. It is proved that the
algorithm converges in all case but the local minima
will have to be avoided by a judicious choice of the
value of the convergence threshold.
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Fig.1 Fuzzy C Means algorithm

The probabilistic hypothesis of the fuzzy C
means algorithm imposes that the sum of the
membership degrees of each point should be unitary.
The maximal membership degree of point can not be
lower than 1/c whatever its distance to centroids of
classes. Consequently a point far away from classes
has a maximal membership degree too high to be
rejected in belonging. So it will be affected to a
class.

The defuzzycation is realised by the maximum
membership rule [9]. Each point is affected to the
class for which it has the maximal membership
degree.

2.2 Possibilistic C means algorithm

A solution to the problem of points which are far
away from classes was proposed by Krishnapuram in
1993 [7]. It is based on a possibilistic approach. The
probabilistic hypothesis is changed into an
hypothesis warranting that each point belong to one
class at least. The degree u; do not reflect the
membership degree anymore but the compatibility
degree or membership possibility between a point
and a class. The hypothesis become :
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The new criteria to minimise becomes :
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In this expression the first term corresponds to
the criteria of the Fuzzy C Means. The second
imposes the highest possible values to the
membership possibilities . Parameter m; determines
the distance from which the membership possibility
is equal to 0.5. Krishnapuram proposes to use a
value proportional to the average intraclass distance
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The algorithm is initialized with the partition
matrix obtained by the Fuzzy C Means method.
Centroids and membership possibilities are
computed with iterative method by the following
expressions :
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The calculus is achieved when the difference
between each membership possibility and the
possibility of the previous iteration is lower than a
defined threshold €. As for the Fuzzy C Means
algorithm, the m value is equal to 2 and the
defuzzycation is made according to the maximum
membership rule.

3 Criteria of class validity

Before the defuzzyfication of U, it is necessary to
validate the obtained partition by heuristic criteria.
These were studied by Bezdeck and are shown in
table 1.

The number of classes could be determined by
making successive clusterings with increasing values
of c. The best partition is obtained when criteria
attain their minima. Consequently they allow to
determine the number of classes existing in a set of



points. Therefore the use of these criteria can be
local only because they have a tendency to attain
their global optima when c is near n-1 [5].

Criteria
Compacity and
separability
(&)
Classification
entropy (H)

Expressions
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Table 1 Criteria of class validity

In this table X; is the fuzzy covariance matrix
defined by :
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where §; is the fuzzy dispersion

matrix defined by :
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Compacity m and separability s are respectively
defined by :
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4 Applications and comparative results
4.1 Presentation of the data

4.1.1 Plastic material data (PM)

Plastic bottles are generally made with one of the
three following polymers : P.E.T., P.V.C., PEH.D..
To be recycled these different categories of bottles
must be separated. Infrared spectrometry has been
used to caracterize the different bottles. The analysis
of the spectrum of each material has enabled to
select 7 discriminating wavelengths. The study of
the correlations has allowed us to reduce this
number to 2. We have 90 transmission values for the
two wavelengths A, and A,. These values are
distributed into three classes of 30 points as it is
shown in figure 2.

The classes are well separated. They have
elongated and tilted shapes. Classes include empty
areas which can raise some problems for the
determination of the number of classes.
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Fig.2 Representation of the 3 classes of plastic
materials :1 PVC, 2 PET, 3 PEHD

4.1.2 Metallic code data (MC)
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Fig.3 Response of the dispositive to the 9 codes (a)
and representation of the 9 classes (b)



The Laboratory of Automatic and Microelectronic
has developed a device using a sensor with eddy
currents to read the codes made by a succession of
metallic fine bands, separated by an insulating zone
[6]. Figure 5a shows the response of the device to
the 9 codes defined by the manufacturer. Two
characters were selected among the 52 computed, for
their power of discrimination. Figure 4b shows the 9
classes of 45 points that we obtained. The
classification difficulty of these data comes from the
different densities of the different classes.

4.1.3 Iris data (ID)

Those data are widely used for the comparison of
classifiers. They are composed of three classes of
flowers : IRIS Setosa, Versicolor and Virginia. Each
class is constituted of 50 samples characterized by 4
attributes : length and width of the bot sepals, length
and width of the petals. Two classes among the three
are not well separated.

4.1.4 Washing Machine data(WM)

These data come from a study achieved in the
Laboratory of Automatic and Microelectronic. The
aim is to detect the unbalance failures in a washing
machine by measuring the movements coming from
the vibrations of the machine during its washing
process [2]. Measures are realised by eddy current
sensors. We obtain a set of 204 points including 4
classes. Each class corresponds to an unbalance and
to its position in the tub. The set of points is shown
on figure 4. Classes are elongated and tilted. Two of
them are not well separated.

Fig.4 WM data

4.2 Results of the Fuzzy C Means algorithm
For the PM and WM data we have used the
Mahalanobis distance because of the elongated and
tilted shape of the classes. For the other serials of
data we have retained the euclidean distance. Tables
2-5 present the values of the criteria. The value of
the convergence threshold is 0.01 for all data.

c CS(Uc) H(Uc) Fuu(Ue)
2 0.0032 0.1366 94.1043
3 0.0014 01151 27.8385
4 0.0055 0.1653 34.8269
5 00025 02003 27.5009
6 0.0081 02427 14.5998
7 0.0063 02724 25.0723

Table 2 Criteria of class validity for MP data

¢ CS(U,) H(U,) FyyUyc)
2 0.0542 0.0851 0.0216
3 0.1371 0.1719  0.0205
4 0.1958 0.2440  0.0209
5 03998 03073  0.0210
6 03281 03552 0.0217
7 03733 0.3943  0.0190

Table 4 Criteria of class validity for ID data

¢ CS(U,) H(U,x) Fuy(Uyc)
7 0.1234  0.2650 0.0153
8 0.1575 0.2029 0.0118
9 0.0872 0.1750 0.0081
10 0.0698 0.1821 0.0088
11 07868 02119  0.0090
12 04070 0.2082  0.0087

Table 3 Criteria of class validity for MC data

c CS(Uc) H(U,c) FuyUg)
2 203545 0.1128 0.0035
3 72.58417 0.0645 0.0013
4 1492862 0.0954  0.0011
5 203.0406 0.1631 0.0019
6 27.5606 0.1728 0.0019
7 360.1878 0.2335  0.0021

Table 5 Criteria of class validity for WM data

For PM data the first two criteria give 3 classes
as expected. On the other hand the fuzzy
hypervolume criterion reaches its optimum for 6
classes. We can explain this result ; indeed we can
obtain 6 classes by dividing each class into two
subclasses. This clustering is presented on figure Sa.
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Fig.5 Clustering of PM data into 6 classes (a) and of
MC data into 10 classes (b)

Concerning MC data two criteria reach their
optima for 9 classes which is true to reality. The
compacity separability gives 10 classes. This result
comes from the low compacity of class 6. The
clustering into 10 classes is presented on figure 5b.

For ID data, we notice that the optima are
reached for 2 or 3 classes. These results are true to
reality, indeed two of the three classes overlap
themselves. The fuzzy hypervolume gives the best
result. For WM data criteria give 2, 3 and 4 classes.
The clusterings are presented on figure 6. For the
clustering into 4 classes the algorithm does not make
any classification mistake. Clustering into 3 classes
is obtained by merging classes 1 and 2, which are
not well separated. The fusion of classes 3 and 4
gives the clustering into 2 classes.

During our tests we noticed that the results of
validity criteria were not always reliable when they
were used with the Fuzzy C Means algorithm.
Indeed all of them do not converge on the same
number of classes. The best criterion seems to be the
fuzzy hypervolume.
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Fig.6 Clustering of the WM data into 2 (a) and 3
classes (b)

4.3 Results of the Possibilistic C Means
algorithm

The possibilistic algorithm is initialised in all cases
with the membership matrix coming from the Fuzzy
C Means algorithm. The convergence threshold is
equal to 0.7. We computed the criteria of validity of
classes for this algorithm. The results are shown in
tables 6-9.

We notice that for PM and CM data, the criteria
give the real number of classes existing in the set of
points. For ID data, the proximity of two classes
among the three explains that two of the three
criteria attain their optima for 2 classes. However the
classification entropy reaches its minimum for 3
classes. For WM data, the criteria reach their
optimal values for 3 classes. As for ID data, the
possibilistic algorithm has a tendency to merge two
neighbour classes. Only the fuzzy hypervolume
attains a second optimal value in 4 classes.



¢ CS(U,x) HU, Fuyy(Uyc)
2 01447 02112 479712
3 0.0106 0.1543 5.8804

4 0.0803 02417 28.9280
5 0.0564 0.2520 12.0897
6 0.1542 0.2883 9.0676

7 0.6524 0.3002 15.3853

Table 6 Criteria of class validity for MP data

C CS(U,C) H(U,C) FH\/(U,C)
2 00146 0.1761 0.0123
3 0.0657 0.2664 0.0157
4 0.1341 03505 0.0195
S 0.1878 0.4190 0.0251
6 03037 04655 0..0243
7 04654 0.5722  0.0325

Table 8 Criteria of class validity for ID data

c CS(Uc) H(Uc) Fuv(U,c)
700745 04104 0.0173
8 0.0631 03023  0.0084
9 0.0238 0.2481  0.0040
10 1.1389 03106  0.0060
11 29399 03379  0.0069
12 33606 03884 0.0068

Table 7 Criteria of class validity for MC data

¢ CS(U,) H(Ux) Fygy(Uc)
2 0.0597 0.1799 0.0014
3 0.0154 0.1447  0.0004
4  0.0567 0.1834  0.0004
5 03533 0.2862 0.0015
6 0.8938 0.3500 0.0014
7 0.5309 0.3127  0.0007

Table 9 Criteria of class validity for WM data

5 Conclusion
The tests we have made show that the criteria of
classes validity have more performance when they
are used with the Possibilistic C Means algorithm.
This result can be explained by the principle of the
algorithm which consists in decreasing the similarity
degrees of points which are far away from the class.
Consequently the influence of these points in the
calculus of the criteria is decreased. So the used
criteria with the possibilistic approach allow to
determine the number of existing classes in the set of
points without having to divide classes of high
density, such as the class 8 of MC data.

However the Possibilistic C Means algorithm

does not allow to distinguish two neighbour classes.
That is the case of ID and WM data. For this type of
set of points the use of the fuzzy hypervolume
criterion with the Fuzzy C Means algorithm would
be better. Finally these methods allow to determine
the exact number of clusters only if the data include
elliptical or spherical classes. The use of the criteria
of validity of classes with the Possibilistic C Means
algorithm can constitute a good solution to the
problem of the determination of the number of
existing classes in a set of points [3].
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