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Abstract:- This paper presents a multipurpose fuzzy control support system. Fuzzy control is an intelligent
control aimed to have an ultimate degree of autonomy in terms of reasoning and planning and to have the ability
to extract the most valuable information from unstructured and noisy data. Conventional control versus
intelligent control is discussed first in this paper. Then the theoretical background related to fuzzy logic and
fuzzy control is given. Next, the proposed fuzzy control support system is introduced. This system includes an
educational tutorial for fuzzy control, a design tool of a fuzzy controller, a simulation tool giving the total fuzzy
controlled system evolution, a wizard that gathers all required information from user, and finally a possibility of
fuzzy rule-base generation either from equivalence to a conventional three-term controller or from simulation.
This rule-base generation feature helps to obtain an approximate rule-base that may be refined later on,
according to the expected performance.

The proposed support system is developed using Visual C++ and run under PC platform. The animated,
interactive, and graphical windows interfacing facilitates the usage of this system.

A simple fuzzy control system of two coupled tanks is handled as an illustrative example.
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1. Introduction
Conventional automatic control theory needs
mathematical precise models of the process to be
controlled. Feedback, feedforward, PID, minimum
variance, minimum energy, ... control types are
examples of conventional control. The basic
problems encountered with this type of control,
especially with the increase of processes complexity
and the demand of reliability, are: unidentifiable
processes, model uncertainty, incomplete data,
completely changed processes, unexplainable
behaviors, etc. [1]. The need for dealing with
uncertainty, incomplete information, and with the
process operator mentality, urged the researchers
over the last ten years to concentrate on, and employ
what is called intelligent control. This type of
control applies Artificial Intelligence (AI)
techniques; it is based on process models that are
very similar to human mental models. These models
are uncertain and depends on heuristics and common
sense reasoning. There are three intelligent control
approaches that have had significant impacts:

 Expert control: uses a symbolic reasoning
approach, where the knowledge of experts is
made available to the user.

 Artificial Neural Networks (ANNs)_based
control: ANNs are learning systems capable of
uncertain and/or nonlinear mappings.

 Fuzzy control: which is well suited to handling
heuristic knowledge in controlling a system.
This paper takes into consideration the fuzzy

control approach while other intelligent control
approaches are out of its scope. This paper presents
a fuzzy control multipurpose support system that
provides an integrated environment to a process
knowledge engineer through which she/he can makes
it all. She/he can learn the basic concepts of fuzzy
control, design a fuzzy controller, test a fuzzy
controller, apply a fuzzy control to a process, and
simulate the fuzzy controlled system. A new
approach of fuzzy rule-base generation from
simulation is also presented in this support system.

In section 2, the basic concepts of fuzzy logic are
resumed. The principles of fuzzy control are
presented in section 3. In section 4, the main features
of the proposed fuzzy multipurpose support system
are explained. Section 5 concentrates on the



methodology by which a rule-base is generated. The
application of two coupled tanks, as a fuzzy control
system, is given in section 6. Final conclusions are
given in section 7.

2. Fuzzy Logic
The basic concepts of the fuzzy sub-sets theory and
the fuzzy modeling are presented in this section; this
theory was lanced by L. A. Zadeh in 1965. The
details can be found in [2], [3], [4], [5], [6].

2.1 Fuzzy Sub-Sets Theory
The fuzzy is related to the difficulty of realization of
slicing distinction among information, which is the
frequent case in the human mentality. A fuzzy
information can be imprecise and/or uncertain: the
imprecision concerns the information contents while
the certainty concerns the truth or the falsity of the
information. The theory of fuzzy sub-sets treats
linguistic variables instead of numerical variables.

If E is a reference set (integers, reals, etc.) and x
is a defined variable over this set, then A is said to be
a fuzzy sub-set (or fuzzy part) of E, if there is an
application A called membership function, defined

by: A: E  [0, 1]; A(x)  [0, 1]. The reference set

E is transformed into a set of fuzzy sub-sets f(x). A
fuzzy sub-set Ai, for I: 1  m, is associated to a

linguistic signification Li. Therefor, a transformation 

 exists such that: f(x) = {A1, A2, ..., Am} (the set

of all fuzzy parts), l(x) = {L1, L2, ..., Lm} (set of

all linguistic significations), and : f(x)  l(x).
The membership function concerning the fuzzy

sub-set Ai is written as Li(x). Consider for example

a variable x defined on +, one can define three
fuzzy sub-sets as shown in fig. 1 with the fuzzy
significations (small), (middle), and (large). The
definition of a membership function does not follow
any rule and depends only on the human experience
and statistic data. The form of a membership
function the most used is whether triangular or
trapezoidal.

Fig. 1 Linguistic signification of a fuzzysub-set.

2.2 Fuzzy Modeling
A fuzzy proposition is a representation of knowledge
expressed in a natural manner by a human. The
proposition takes the form "x is Lx" where x is a
numeric variable and Lx is a linguistic signification
of a fuzzy sub-set; e.g. "z is small", "y is large",
"temperature is high", etc. A fuzzy model of human
knowledge is a set of fuzzy rules; a fuzzy rule is a
conditional scheme of the form: rulei:

IF (Propositioni_1) THEN (Propositioni_2).

Propositioni_1 and Propositioni_2 are called

antecedent and conclusion of the rule number i
respectively. An example is: rulei: IF "x is small"

THEN "y is large". The antecedent proposition can
be a combination of propositions via logical
connectives AND, OR, and/or NOT. An example is:
rulei: IF "x is small" AND "y is middle" THEN "z is

large".

2.2.1 Fuzzy Inference: Generalized Modus Ponens
Consider the fuzzy rule: IF "x is Lx" THEN "y is
Ly"; it is given Lx(x) (the membership function that

x is Lx), and the observed fact "x is L'x" with

L'x(x) (it is 1 in case of precise input numeric

measurment (x0), and in case of imprecise

measurement, it is a triangular membership function
with its vertex at 1 and its base depends on the
precision). The conclusion (in presence of the
observed fact which is imperfectly convenient to the
antecedent) is "y is L'y" with membership function

L'y(y) which is derived by the application of the

combination-projection principle (generalized modus
ponens):

 L'y(y) = SUPx ET ( L'x(x), R(x, y)) …...(1)

1

x
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where E is the reference axis, and T is a triangular
norm expressing a fuzzy conjunction. Many T-norms
are defined:

T1(u, v) = min(u, v) (Zadeh)
T2(u, v) = u.v (Probabilistic) …(2)
T3(u, v) = max(0, u+v-1) (Lukasiewicz)

where u and v are membership functions; R(x, y) is

a possibilistic distribution function describing the
causal link, or the implication degree, between the
antecedent and the conclusion of the rule. Note that
the conversion from input numeric data into suitable
linguistic variables and corresponding membership
degrees or functions is carried out via a fuzzification
procedure.
There are two cases of rules representation:

Cas # 1 numeric representation of rules: it is given
the membership function Ly(y) of the proposition "y

is Ly"; R(x, y) is calculated (in case of conjunctive

reasoning) as follows:

R(x, y) = T( Lx(x), Ly(y))

 L'y(y)=SUPx ET( L'x(x),T( Lx(x), Ly(y))

  .……....(3)
On using T1, for example,

 L'y(y)=SUPx Emin( L'x(x),

   min( Lx(x), Ly(y))

            =SUPx Emin(min( L'x(x), Lx(x)), Ly(y)).

………...(4)

This case can consider precise and imprecise (fuzzy)
input numeric data within the fuzzification
procedure.

Cas # 2  symbolic representation of rules: it is given

R(x, y)  [0, 1] as a factor expressing the

confidence of the rule, and often the rule is written
under the form : IF "x is Lx" THEN "y is Ly" (CF =
cf). CF is the confidence factor of the rule. This case
considers only the precise input numeric data to be
fuzzified, x = x0.

 L'y(y) = T ( L'x(x0), cf) ………………….(5)

The T-norm T2 is often used in this case and
therefor:

L'y(y) = L'x(x0)*cf. …….……………….(6)

2.2.2 Fuzzy Aggregation
There are two types of aggregation: aggregation of
propositions at the level of a rule and aggregation of
multiple rules, whose output variable in their
conclusions is the same.

aggregation of propositions: the logical operator
AND is replaced by a triangular T-norm (T1, T2,
T3, etc.). The logical operator OR is replaced by a
triangular T-conorm ( ) expressing a fuzzy
disjunction. Many T-conorms are defined:

 1(u, v) = max (u, v) (Zadeh)
2(u, v) = u+v -u.v (Probabilistic) …………..(7)
3(u, v) = min(1, u+v) (Lukasiewicz).

The fuzzy negation is made as:
 n(u) = 1-u ……………………………………(8)

If it is given for example the proposition ("x is Lx"
AND ("y is Ly" OR "z is Lz")), then the membership
function of this proposition is T ( Lx(x),  ( Ly(y),

Lz(z)).

aggregation of multiple rules: given m rules of the
form: Ri : IF (x is Lxi) THEN (y is Lyi) ; i:1 m,

then:

F(y)=MAX(i,j) ISUPx ET( L'x(x),

      T( Lxi(x), Lyj(y))) ..(9)

 where I is the set of the different combinational
couples between Lxi and Lyj; F(y) is the deduced

fuzzy conclusion about y where for any value of y
(e.g. y0), the corresponding degree of confidence of

its value is F(y0). If the T-norm T1 is used, then:

F(y)=MAX(i,j) ISUPx Emin(min( L'x(x),

Lxi(x)), Lyj(y))..(10)

 If precise input numeric data is considered, then the
inference is simplified by:

F(y)=MAX(i,j) Imin( Lxi(x0), Lyj(y)) ...(11)

note that L'x(x0) = 1, which is known as

« singleton » fuzzy sub-set.

3. Fuzzy Control
The basic structure of a fuzzy controller is given in
fig. 2. Each component is explained in the following:



Fig. 2 Structure of a fuzzy controller.

Data base: defines the membership functions of
fuzzy sub-sets of each variable over its universe of
discourse. Possible fuzzy sub-sets (linguistic
variables) of a control variable (error, change of
error, control action, etc.) are: PB (Positive Big), PM
(Positive Medium), PS (Positive Small), ZE (Zero),
NS (Negative Small), NM (Negative Medium), and
NB (Negative Big). A membership function may be
triangular, trapezoidal, etc.
Rule base: fuzzy control rules are a set of imprecise
conditional statements which constitute a set of
linguistic decision rules. The form of a fuzzy control
rule is: IF (conditions are satisfied) THEN (actions
can be taken). An example of a fuzzy control rule is:
If ((error in level is PB) AND (change of this error is
NS)) THEN (control action is PB). The fuzzy
control rule-base can be derived from human
operator’s experience, control engineer’s knowledge,
modeling the operator’s control actions, and/or from
a fuzzy model of the process [7].

Fuzzifier: is an interface that receives input control
numerical variables (like error, change of error, etc.)
and transforms them into their linguistic
significations with appropriate membership degrees,
using the data base. Note that a numerical value may
correspond to multiple linguistic values with different
membership degrees, e.g. error is ZE with 0.7
certitude and PS with 0.5 certitude (sum is not
necessarily unity, as possibilistic approach is
followed).

Inference engine: specifies at first the applicable
fuzzy rules (from the rule-base) convenient to the
current fuzzy control inputs, and then determines the
fuzzy control action through a fuzzy inference (as
explained above). In the literature [8], [9], [10], the
one can find Mamdani, Larsen, Tsukomoto, and

Takagi fuzzy inference (or reasoning). Each type of
fuzzy reasoning differs from the others in the way
that membership functions are assigned, the fuzzy
rules are written, and the fuzzy operators are chosen.
In the case of Mamdani’s fuzzy inference, the T-
norm T1 (which is the minimum) is used as
explained in section 2. In the case of Larsen’s fuzzy
inference, the T-norm T2 (which is the product) is
used. Tsukomoto’s fuzzy inference is similar to that
of Mamdani but two fuzzy sub-sets only are used for
each variable : Positive (P) and Negative (N). In the
case of Takagi’s reasoning, a fuzzy rule is such that
the antecedent is expressed in terms of fuzzy
variables (as normal) but the conclusion expresses
the control action as a function of numerical values
of the input control variables ; the degree of certainty
of a fuzzy rule influences the numerical function of
that rule. Fig. 3 shows an example of Mamdani’s
fuzzy inference, assuming that the applicable fuzzy
rules are:

  Rule_1: If((e is PS)AND(ce is PM))THEN (u is
PS)

  Rule_2: If((e is PM)AND(ce is PS))THEN (u is
PM)

where e is the error, ce is the change of error, u is the
control action, e0 and ce0 are given precise

numerical values of the error and its change. The
inference law is (cf. section 2):

F(u)=MAX(i,j,k) Imin(min( Lei(e0),

Lcej(ce0)), Luk(u)) ……(12)

F(u) is the fuzzy control action (deduced fuzzy

conclusion about u).

Fig. 3 Mamdani’s fuzzy inference.
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Deffuzifier: is an interface that performs the inverse
operation of a fuzzifier; it receives the fuzzy control
action F(u) and gives a crisp numerical control

action u0. Two reliable methods of defuzzification

are shown in fig. 4 [11]. The mean of maximum
(MOM) method takes the average value of all control
actions whose membership function attains a
maximum. The center of gravity (COG) method
takes the average of the control action values
weighted by the grade of membership.

Fig. 4 Defuuzification methods.

4. Fuzzy Control Educational Tutorial
and Simulator

In this section, the main functions and structures of
the proposed fuzzy control multipurpose support
system are presented. The main features of this
system are:

 Visual tool that simplifies design: the simplicity
from interactive visual interface, wizard modules
that guide user, and validation that prevent logical
errors.

 On-line help: in each application dialog, user will
find help to understand each dialog item and the
general operation of the dialog.

 Capacity to test and tune designed fuzzy
controller: there is a capacity to test a designed
fuzzy controller directly by applying crisp input
and find the crisp output, or by connecting the
fuzzy controller to control a system defined by
state space equations and run the simulator then
watch the response through a graph.

 Wizard that gathers all required information
from user: the idea of the wizard is to teach the
user the method or the steps of fuzzy control
design. After using the wizard several times, user
can use application modules separately.

 Automatic rule-base generation: this is done
either in equivalence to a three-term controller or
starting from simulation (cf. section 5).

The first session with the fuzzy support system
provides the screen shown in fig. 5. All system’s
modules can be accessed directly from the main tool
bar. The function of each tool bar icon is illustrated
in fig. 6. Each module of the proposed system is
explained in the following.

Fig. 5 First session with the fuzzy support system.
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Fig. 6 Tool bar icon functions.
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4.1 Fuzzy Controller Module
In this module, the one can define a fuzzy controller
where its fuzzy rule-base, the membership functions
of its input and output variables can be edited. The
rule-base editor sub-module offers an easy way to
edit a fuzzy control rule just by determining the
linguistic signification of the input and output
variables, using combo-box controls. The rule-base
editor offers also an easy navigation through rules
sequentially using spin control. Fig. 7 shows the
interface of the rule-base editor. The membership
function editor sub-module allows the definition of
the membership functions of the linguistic
significations of each variable whether it is input or
output. This editor supports any number of
membership functions, supports trapezoidal and
triangular membership types, and it gives a graph to
view fuzzy variable memberships and reflects any
change in fuzzy variable data. Fig. 8 shows the
interface of the membership function editor.

Fig. 7 Rule-base editor.

Fig. 8 Membership function editor.

4.2 Test Module
This module allows the test and experimentation of a
fuzzy controller after its definition. At first, the user
determines the method of defuzzification to be

followed. Next, the user is allowed to enter crisp
values of the fuzzy controller input variables (error
and change of error). This is done by using slider
control or by entering the variable crisp value as a
number; the system prevents user from entering
wrong data (i.e. out of the universe of discourse).
The system shows the position of the crisp value on
the membership functions graph, as shown in fig. 9.
Pressing « Next » button allows moving to the next
input variable. After giving the input variables crisp
values, the system can show the set of firable rules,
and then can give the crisp control action value after
defuzzification.

Fig. 9 Entering input variables crisp values.

4.3 Process Module
In this module, a process can be defined. This
definition is made by giving the process state space
model of the form:

X. = AX + BU
Y=CX + DU ………………………………..(13)

where X, U, and Y are the state, input, and output
vectors respectively ; A, B, C and D are the state,
input, and output matrices respectively. Fig. 10
shows the interface of the process editor module.

Fig. 10 process model editor.



4.4 Simulation Module
This module connects a fuzzy controller to a process
that have been defined (within the corresponding
modules) and run a simulator to find out the response
of the fuzzy controlled process, as will be shown in
section 6.

4.5 Wizard Module
This module enables the user to define complete
fuzzy control system in a set of steps:

 define control system (through state space model);
 define fuzzy variables (input - output);
 define fuzzy control rules either manually or

automatically. Automatic rule-base generation is
explained in the next section.

5. Rule-Base Generation
The control of a process using conventional methods,
represents itself an experience; this experience can be
converted into fuzzy control rules in an automatic
fashion. Conversion to a fuzzy control is in need to
deal with uncertain and incomplete information. This
conversion may be done either in equivalence to a
PID controller using the fuzzy PID method [12], or,
as proposed in this paper, from simulation as
explained in the following:

5.1 Fuzzy PID Method
This method assumes the membership functions of
the error (e), change of error ( e), change of change

of error ( 2e), and change of control ( u) as shown
in fig. 11 (note that the control action in the case of
PID controller is a change of control signal). The ei,

ej, 
2ek, and ul, for i, j, k, and l : ..., -1, 0, 1, ...

are called modal values. At these modal values, the
outputs of both fuzzy and conventional PID
controllers must be equal to each other. It can be
shown that the conventional PID control law is:

u = T.KI.e + KP. e + (KD/T). 2e ………...(14)

where T is the sampling period; KP, KI, and KD are

the proportional, integral, and derivative gains
respectively. This control law is valid at modal
points of the fuzzy controller, so:

ul = T.KI.ei + KP. ej + (KD/T). 2ek …….(15)

 l. D=T.KI.i. A+KP.j. +(KD/T).k. C ….(16)

Therefore, if it is given KP, KI, KD, and T of a

conventional PID controller, the fuzzy equivalent
controller is specified by:

 l = i + j + k,
D/ B=KP,

D/ A=T.KI,

D/ C=KD/T ……………………………....(17)

 If the value of D is assumed, then A, B, and C
can be got and hence the membership functions are
specified. The law that l = i + j + k represent the
fuzzy control rules. If, for example i=1, j=0, and
k=1, then l=2; this is the rule that:  IF ((error is PS)
AND (change of error is Z) AND (change of change
of error is PS)) THEN (change of control is PB) and
so on. Equivalent fuzzy controller of P, PI, or PD
controller can be got easily from the general case of a
three-term controller explained above.

Fig. 11 membership functions of the variables of a
fuzzy PID controller.
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5.2 Simulation Method
An equivalent fuzzy controller to a conventional one
(whether PID or not) can be got from simulation as
proposed in this paper as follows:

 input variables of the fuzzy controller are
assigned, e.g. error and change of error ;

 membership functions of these input variables and
the control action are assigned ;

 simulation of the conventionally controlled
process is run for a time ts ;

 within ts, find the periods within which the

control action is ..., NS, Z, PS, ... (note that there
will be overlaps) ;

 for each membership of the controller output, a
group of rules can be generated. The generation
of the rule-base is illustrated by the following
example: suppose that the control action is PS
within the periods t1, t2, and t3; it is NS within
the periods t4, and t5; it is Z within the period t6
with the overlap and period relativity as shown in
fig. 12. Within t1, the error signal verifies the
membership functions Z and PS; the change of
error verifies NS and Z; other membership
functions verified by the error and the change of
error for the other periods are indicated in fig. 15.
For the membership PS of the output,the
generated rules are :

R1_PS: IF ((error is Z) and (change of error is
NS)) THEN (control action is PS)

R2_PS: IF ((error is Z) and (change of error is Z))
THEN (control action is PS)

R3_PS: IF ((error is PS) and (change of error is
NS)) THEN (control action is PS)

R4_PS: IF ((error is PS) and (change of error is Z))
THEN (control action is PS)

R5_PS: IF ((error is Z) and (change of error is
NB)) THEN (control action is PS)

*R6_PS: IF ((error is PS) and (change of error is
NB)) THEN (control action is PS)

**R7_PS: IF ((error is PB) and (change of error is
NB)) THEN (control action is PS)

For the membership NS of the output, the
generated rules are:

*R1_NS: IF ((error is PS) and (change of error is
NB)) THEN (control action is NS)

**R2_NS: IF ((error is PB) and (change of error
is NB)) THEN (control action is NS)

R3_NS: IF ((error is PB) and (change of error is
PS)) THEN (control action is NS)

R4_NS: IF ((error is PB) and (change of error is
PB)) THEN (control action is NS)

For the membership Z of the output, the generated
rules are:

R1_Z: IF ((error is Z) and (change of error is PS))
THEN (control action is Z)

R2_Z: IF ((error is Z) and (change of error is
PB)) THEN (control action is Z)

R3_Z: IF ((error is PS) and (change of error is
PS)) THEN (control action is Z)

R4_Z: IF ((error is PS) and (change of error is
PB)) THEN (control action is Z)

Rules of the same antecedents and different
conclusions constitute ambiguous situations
which are resolved using the relativity of
membership periods as follows: consider rules
R6_PS and R1_NS; they are of the same
antecedent that error is PS and change of error is
NB, this antecedent gives that the control action is
PS for period equals to t2+t3 and it is NS for
period t4. Since t2+t3 > t4, then rules R6_PS and
R1_NS leads to one rule with the same antecedent
and with the conclusion that the control action is
PS. Similarly, rules R7_PS and R2_NS leads to
one rule with the same antecedent and with the
conclusion that the control action is PS (as t3 >
t4). Any ambiguous situation is resolved in the
same way.

Fig. 12 Rule-base generation via simulation method.
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6. Simulation Example
The simulation example considers the fuzzy control
of a process of two coupled tanks. The input of the
first tank is coming from stream of water that can be
manipulated by a valve (input valve opening is the
manipulated variable). The tanks are connected
together from the bottoms. The head of the first tank
affects the flow between the tanks. The controlled
variable is the head of the second tank (cf. fig. 13).
In this example, the state space model of the process
is defined to the fuzzy support system; the system
order is 2, the number is inputs is 1 and the number
of outputs is 1, with:

A = [-2   2 ; 2   -1],

BT=[1   0],
C = [0   -3],
D = 0 ………………………………………..(18)

Then, a conventional PI controller is defined with a
proportional band P=150 % and an integral time I=1
sec. The step response of the PI controlled process
with a step value of 6 level units, is shown in fig. 14.
Then an equivalent fuzzy rule-base is generated by
the support system via the simulation method; the
definition of membership functions of the error and
the change of error as input variables, and of the
control action, is made as shown in fig. 15. The set
of generated fuzzy rules in this example is given in
table 1. The step response of the equivalent fuzzy
controlled process with a step value of 6 level units,
is shown in fig. 16.

Fig. 13 Two coupled tanks system.

Fig. 14 Step response of the PI controlled system.

Fig. 15 Membership functions of control input and
output variables of the double tank system.

Error

Delta Error

NB NS Z PS PB

NB PS PS PB PB PS
NS PS PS PS PB PS
Z PB PS PB PB PB

PS PS PB PB PB PB
PB PS PS PB PB PB

Table 1 Set of generated fuzzy rules via simulation.

Fig. 16 Step response of the fuzzy controlled system.

The obtained fuzzy controller, in equivalence to a
conventional one via the simulation, is not
guaranteed to give a better response than the
conventional one; it may give a better response or
may not, depending on:



 level of noise, perturbation, and incomplete data;
 coverage of the simulation data to all the regions

of the membership sets. Hence, during simulation,
several set points with different values should be
applied to cover all input-output ranges;

 fuzzy membership function shapes and their
numbers of the control input-output variables.

In all cases, a generated rule-base can be refined by
the process knowledge engineer according to the
expected performance; this rule-base guides the
process engineer to have a satisfactory final rule-
base instead of starting from nothing.

7. Conclusion
No doubt that the recent emerge of the intelligent
control techniques has solved many problems
encountered during dealing with industrial process in
a conventional way. Fuzzy control, as one of the
intelligent control techniques, tries to deal with
processes as the human operator deals with them as
possible. Hence, there is no need for complex precise
models but rather simple set of fuzzy rules are in
need that code the human experience in a natural
way.

This paper has reminded the importance of
intelligent control, and then has given a fuzzy control
support system including powerful features helping a
process engineer to learn and experiment fuzzy
control. A new method has been presented in this
paper, to generate fuzzy control rules starting from a
process model and a conventional controller. This
method has been tested on a double tank system, as
illustrative example. The response of the fuzzy
controlled system approaches to the response of the
conventionally controlled system. Further refinement
of the generated fuzzy control rules can be done
based on the expected fuzzy control system behavior.
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