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Abstract: Systems, whose parameters or working conditions are subject to abrupt changes can be naturally
modelled as jump linear systems. Because of their numerous applications in tracking, fault-tolerant control,
manufacturing processes and robotics, such systems have drawn extensive attention. This paper is concerned
with the optimal control of time - varying, discrete - time linear systems whose parameters are dependent on
time and finite-state Markov processes which is directly observed. The cost functional to be minimized is the
infinite-time horizonte quadratic cost. The solution of this time-varying jump linear quadratic control problem
relies on study of nonnegative definite global and bounded solution of coupled difference Riccati equation.
Necessary and sufficient conditions for existence of such a solution are obtained in terms of optimizability and
detectability. Moreover the condition of the optimal close-loop system are established. In the time invariant
case this results generalize the existing results about discrete JLQ on infinite time interval.. The more realistic
case in which we have only partial observation of the Markovian  parameter is objective of further  researches.
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1. Introduction
Consider discrete-time linear system with
Markovian jumps, modeled by
(1) ( ) ( ) ( ) )()(,)()(,1 kukrkBkxkrkAkx +=+ ,
where the coefficient matrix functions

nnRSA ×→×Ν: , mnRSB ×→×Ν:  are such
that ( )iA ,⋅  and ( )iB ,⋅  are bounded for each Si ∈ ,

( )kx  denotes the state vector, ( )ku  is the control
input, and the abrupt changes are incorporated into
the model via the Markov chain ( )kr  taking values

in a finite set S  and constant probability matrix
( )

SjiijpP
∈

=
,

,where

( ) ( )( )ikrjkrPpij ==+= 1 .

Subject to (1) we consider the minimization of
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with nnRSQ ×→×Ν:  and nnRSR ×→×Ν:

such that ( ) ( )ikQikQ ,, ′= , ( ) 0, ≥ikQ ,

( ) ( )ikRikR ,, ′= , ( ) 0, >ikR  for all

( ) Sik ×Ν∈,  and ( )iQ ,⋅ , ( )iR ,⋅  and  ( )iR ,1 ⋅−  are

bounded for each Si ∈ . In (2)  x  is the solution of
(1) with control u  belonging to U  such that

( ) ( ))(),(, krkxkku ϕ= . Together with the
problem (1), (2) we also consider the optimal
control problem on the finite time-interval [ ]N,0 .
In this case the cost functional takes the form
(3)
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where nnRSF ×→:  is such that )()( iFiF ′= ,

0)( ≥iF  for all Si ∈ .



Discrete time invariant version of JLQ
problem was solved for finite time interval in [2].
In [1] the case where matrix A is not dependent on
the Markov process is examined. Necessary and
sufficient conditions were given for the existence of
steady-state solutions with finite expected cost for
the discrete time invariant JLQ problem in [3] and
[6]. Finally in [4] the most general solution of
discrete time invariant JLQ problem is presented
when the space of values of the Markov chain is
countable infinite under the assumption of
stochastic stabilizability and stochastic
detectability. To our knowledge the general time
varying JLQ problem has not been treated
elsewhere. Its significance results from the fact that
linear model of the system is usually found basing
on linearization of the real world nonlinear process
along the given trajectory and therefore its
parameters are time-varying.

The solution of discrete time varying JLQ
on finite interval is given by the following theorem.
Theorem 1 The optimal control for the control
problem (1), (3) is given by
(4) )())(,()(~ kxkrkLku −= ,
where

( ) ( ) ( ) ( )( )
( ) ( ) ( ),,,1,                                       

,,1,,),( 1

ikAikFikB

ikBikFikBikRikL

+′
+′+= −

( ) ( )jkPpikF N
Sj

ij ,, ∑
∈

= , SikNk ∈=  ,,..., 0

and ( )ikPN , , SikNk ∈=  ,,..., 0  are given by the

following coupled difference Riccati equation
( )iNPN , = )(iF ,

(5)
( ) ( ) ( )

( ) ( ) ),,(,,                                

,,,),1(

ikLikBikA

ikAikFikAikPN

′
−′=−

SikNk ∈=  ,,..., 0 . Moreover

(6) ( ) ( ) .,,~,, 000000,0
xxikPuixJ NNk =

2. Optimizability and Existence of
Solution of Coupled Difference
Riccati Equation
The primary concern in this section is to establish
sufficient and necessary conditions for the
existence of optimal control for the problem (1)-
(2). For this purpose we need the following Lemma
whose counterpart for analogue for processes
without jumps is well known [5].

Lemma 1 If ( )ikPN ,)1(  and ( )ikPN ,)2(  are solution

of (5) such that ( ) ( )iNPiNP NN ,,0 )2()1( ≤≤ , Si ∈

then ( ) ( )ikPikP NN ,, )2()1( ≤ , SikNk ∈=  ,,..., 0 .

Proof. Fix { } SikNk ∈∈  ,,..., 0 , nRx ∈0  and

denote by ( )uixJ Nk ,, 00
)1(
,0

 and ( )uixJ Nk ,, 00
)2(
,0

cost

functional (4) with =)(iF ( )ikPN ,)1(  and

=)(iF ( )ikPN ,)2( , Si ∈ ,  respectively. Using

( ) ( )iNPiNP NN ,, )2()1( ≤ , Si ∈  it follows easily that

( )uixJ Nk ,, 00
)1(
,0

 ≤ ( )uixJ Nk ,, 00
)2(
,0

. so by (6) we

conclude that

( ) ( ) 000
)2(

000
)1( ,,,, xxikPxxikP NN ≤ .

Because 0k  is arbitrary the proof is complete.

Definition  The system (1) with  cost functional (2)
is called optimizable if, for every fixed Si ∈0  and

nRx ∈0  there exists control u such that

( ) ∞<uixJ ,, 00 .

Theorem 2 If the system (1), (2) is optimizable
then the limits
(7) ( ) ( )ikPikPN

N
,,lim =

∞→

exists for all ,...2,1=k , Si ∈ , where  ),( ikPN  is

the solution of (5) with terminal condition
),( iNPN =0, Si ∈ , ( )ikP ,  satisfies the equation

(5). Moreover  ( )ikP , = ( )ikP ,′ , ( ) 0, ≥ikP  for all

,...2,1=k , Si ∈  and ( )ikP ,  is the minimal
nonnegative definite global and bounded solution
of (5) and the optimal control is given by
(8)             )())(,()(~ kxkrkLku −= ,
where

( ) ( ) ( ) ( )( )
( ) ( ) ( ),,,1,                                       

,,1,,),( 1

ikAikFikB

ikBikFikBikRikL

+′
+′+= −

( ) ( )jkPpikF
Sj

ij ,, ∑
∈

= , Sik ∈=  ,...,2,1

and
( ) ( ) .,,0~,, 00000 xxiPuixJ =

On the other hand, if there exists nonnegative
definite solution of (5) global and bounded than (1),
(2) is optimizable.
Proof. For 210 NN ≤≤  fix { }10 ,...,1 Nk ∈ ,

Si ∈0 , nRx ∈0  and consider the cost functionals

( )uixJ Nk ,, 00, 10
 and ( )uixJ Nk ,, 00, 20

 both with

( ) 0=iF , Si ∈ . Then it follows easily  from the
form of the cost functional that



( )uixJ Nk ,, 00, 10
≤ ( )uixJ Nk ,, 00, 20

and from (6) we conclude that

(9) ( ) ( ) 00000000 ,,,,
21

xxikPxxikP NN ≤ .

By (6) and the optimizability condition we
conclude that there is a constant 0>c  such that

(10)                    ( ) cikPN <,

for all N, Si ∈  and  Nk ,...,1= . From (9) and
(10) we conclude that the limit in (7) indeed exists
and ( ) ( )ikPikP ,, ′= , ( ) 0, ≥ikP  for all  Si ∈
and  ... ,2 ,1=k .Moreover because the constant in

(10) does not depend on k,  ( )ikP ,  is bounded for

all Si ∈ . From (7) we see that  ( )ikP ,  indeed

satisfies (5). Next we shall show that ( )ikP ,  is the
minimal nonnegative definite solution of (5) which
is bounded. Let ( )ikL ,  be another bounded
nonnegative definite solution of (5), and denote by

( )ikPN , , Nk ,...,1= , Si ∈  the solution of (5)

with ( ) ( )iNLiNPN ,, = . Since the solution is

unique and, since ( )ikL ,  satisfies (5) we have

( ) ( )ikLikPN ,, =  for all Nk ,...,1= , Si ∈ .

Furthermore, it follows from Lemma 1, together
with

( ) ( ) ( )iNLiNPiNP NN ,,,0 =≤= ,

that

(11)         ( ) ( ) ( )ikLikPikP NN ,,, =≤
for all Nk ,...,1= , Si ∈ . Combining (7) with (11)
gives

( ) ( )ikLikP ,, ≤ .
To solve the optimal control problem fix  N,

Si ∈0 , nRx ∈0  and consider the cost functional

( )uixJ N ,, 00
)1(

,0  with 0)( =iF , Si ∈  and

( )uixJ N ,, 00
)2(

,0  with ( )iTPiF ,)( = , Si ∈ . Then

apply to (1) the control (8) and use the fact that

( )uixJ N ,, 00
)1(

,0 ≤ ( )uixJ N ,, 00
)2(

,0  and that u~  is

optimal for ( )uixJ N ,, 00
)2(

,0 . We see that

( )uixJ N
~,, 00

)1(
,0 ≤ ( )uixJ N

~,, 00
)2(

,0 = ( ) 000 ,,0 xxiP ,

but the right hand side does not dependent on N, so

(12) ( ) ( )uixJuixJ N
N

~,,lim~,, 00
)1(

,000 ∞→
= =

( ) 000 ,,0 xxiP .

On the other hand we have

(13)  ( ) ( )uixJuixJ N
N

~,,lim~,, 00
)1(

,000 ∞→
= ≥

( ) ( ) 000000 ,,0,,0lim xxiPxxiPN
N

=
∞→

.

(12) together with (13) shows the optimality of u~ .
Now suppose that there exists nonnegative

definite and bounded solution ( )ikP ,  of (5). Fix

Si ∈0 , nRx ∈0 . Then apply the control

=)(ku )())(,( kxkrkL− ,
where

( ) ( ) ( ) ( )( )
( ) ( ) ( ),,,1,                                       

,,1,,),( 1

ikAikFikB

ikBikFikBikRikL

+′
+′+= −

( ) ( )jkPpikF
Sj

ij ,, ∑
∈

= , Sik ∈=  ,...,2,1

to (1) and use the facts that

( )uixJ N ,, 00
)1(

,0 ≤ ( )uixJ N ,, 00
)2(

,0

and that u  is optimal for ( )uixJ N ,, 00
)2(

,0  we have

( )uixJ N ,, 00
)1(

,0 ≤ ( )uixJ N ,, 00
)2(

,0 = ( ) 000 ,,0 xxiP

but the right hand side does not depend on N, so

( ) =uixJ ,, 00 ( )uixJ N
N

,,lim 00
)1(

,0∞→
=

( ) 000 ,,0 xxiP

that means that the system (1), (2) is optimizable.
The proof is now complete.

3 Detectability and Uniqueness of
Solution of Coupled Difference
Riccati Equation
The main objective of this section is to find the
sufficient conditions for the existence and
uniqueness of nonnegative definite global and
bounded solution of coupled difference Riccati
equation (5) and sufficient conditions for stability
of the optimal system. To formulate such a
condition we need the following definitions.
Definition 2 The jump linear system

( ) ( ) ( )kxkrkAkx )(,1 =+
is stable, if for any ( ) SRix n ×∈00 ,

.)0(,)0()( 00
0

2
∞<








==∑

∞

=

irxxlxE
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In this case we call the function nnRSA ×→×N:
stable.
Definition 3 The jump linear system is stabilizable

if for any ( ) SRix n ×∈00 , , there exists a linear

feedback control ( ) )()(,)( kxkrkFku =  such that

the function ),( iF ⋅  is bounded for all Si ∈  and
the close loop system is stable. In this case we call



the pair ),( BA  of functions nnRSA ×→×N:

and mnRSB ×→×N:  stabilizable.
Definition 4 The jump linear system

( ) ( ) ( )kxkrkAkx )(,1 =+
( ) ( ) ( )kxkrkCky )(,=

is detectable, if  the pair )','( CA  is stabilizable. .

In this case we call the pair ),( CA  detectable.
Definition 5 The nonnegative global and bounded
solution ),( iP ⋅ , Si ∈  of (5) is called stabilizable
solution if the system (1) with control

)())(,()( kxkrkLku −= ,
where

( ) ( ) ( ) ( )( )
( ) ( ) ( ),,,1,                                       

,,1,,),( 1

ikAikFikB

ikBikFikBikRikL

+′
+′+= −

and

( ) ( )jkPpikF
Sj

ij ,, ∑
∈

= , Sik ∈=  ,...,2,1

is stable.
The proofs of the following two lemmas are based
on simple arithmetic transformations and we omit
them.

Lemma 2 If the function mRSf →×N:  is such
that

( ) ∞<
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for each ( ) SRix n ×∈00 ,  and nnRSA ×→×N:
is stable then the solution of equation

( ) ))(,()()(,)1( krkfkxkrkAkx +=+ ,

with initial value 0)0( xx =  satisfies

( ) ∞<







==∑

∞

=
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0
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)0(,)0( irxxkxE

k
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Lemma 3 Suppose that ),( iP ⋅ , Si ∈  is the
nonnegative definite global and bounded solution
of (5). Then for every u and for all

( ) SRix n ×∈00 ,  the following holds

( ) −= 00000,0 ,),0(,, xxiPuixJ N

( )( )+== 000 )0(.)0()(),(, irxxNxNxiNPE

( ) ( )( ),)(.)()(,
0





−∑

=

N

k

krkLkukrkRE

( )( ) )00 )0(,)0()(.)( irxxkrkLku ==− ,

where

( ) ( ) ( ) ( )( )
( ) ( ) ( ),,,1,                                       

,,1,,),( 1

ikAikFikB

ikBikFikBikRikL

+′
+′+= −

( ) ( )jkPpikF
Sj

ij ,, ∑
∈

= , Sik ∈=  ,...,2,1 ,

and ( )uixJ N ,, 00,0  is given by (3) with 0)( =iF ,

Si ∈ .
The next Theorem contains the main result

of this section and is one of the most important
contribution of this paper.
Theorem 3 Assume that the system (1), (2) is

optimizable and the pair ( )QA,  is detectable.

Then the Riccati equation (5) has a unique
nonnegative definite and bounded solution.
Moreover this solution is a stabilizable one.
Proof  By Theorem 2 we know that there exists
nonnegative and bounded solution SiiP ∈⋅ ),.(
which is the minimal solution. We first show that
under the control given by (8) the close loop system

is stable. Let mnRSF ×→×N:  be such that
),( iF ⋅  is bounded for all Si ∈  and FCA +  is

stable. Then the solution x~  of (1) which
corresponds to the control given by (8) satisfies
(14)

( ) )()(~))(,())(,()1(~ kfkxkrkFkrkAkx ++=+ ,
where

( ) ( ) ( ) ).(~)(,)(,)(~)(,)( kxkrkCkrkFkukrkBkf −=
It follows that

( ) +≤
222

)(~)(,)( kukrkBkf

( ) ( ) ≤222
)(~)(,)(, kxkrkCkrkF

( ) ( ) +)(~)(,),(~)(, kukrkRkukrkR
σ
µ

( ) ( ) ≤)(~)(,),(~)(, kxkrkQkxkrkQµ

( ) ( )( +)(~)(,),(~)(, kukrkRkukrkRδ

(15)            ( ) ( ) ))(~)(,),(~)(, kxkrkQkxkrkQ ,

where 





= µ
σ
µ

δ ,max , ( ) µ<
2

, ikB ,

( ) µ<
2

, ikF , and ( )ikRI ,<σ , ( ) Sik ×∈ N, .

From (15) we have

( ) ( ) =≤
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k

~,,)0(,)0(~
0000

0

δ

( ) 2

0000 ,,0 xxxiP δνδ ≤ ,

where ( ) IikP ν≤≤ ,0 , ( ) Sik ×∈ N, . By this
inequality and applying the Lemma 2 to (14) we
have



( ) ∞<
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that proves the stability of the close loop system.
Next we show that under the detectability condition
the stabilizable solution ( )iP ,⋅  of (5) is a maximal

solution. Fix ( ) SRix n ×∈00 ,  and denote by

stabU  the subset of U  consisting of such control

u , that the corresponding solution x  of (1)
satisfies

( )( ) 0)0(,)0(lim 00

2 ===
∞→

irxxkxE
k

.

Let ( )iP ,
~ ⋅  be any nonnegative definite and

bounded solution of (5). From Lemma 3, we have

( ) −= 00000,0 ,),0(
~

,, xxiPuixJ N

( )( )+== 000 )0(.)0()(),(,
~

irxxNxNxiNPE

( ) ( )( ),)(.)()(,
0
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krkLkukrkRE

( )( ) )00 )0(,)0()(.)( irxxkrkLku ==− ,

where

( ) ( ) ( ) ( )( )
( ) ( ) ( ),,,1,                                       

,,1,,),( 1

ikAikFikB

ikBikFikBikRikL

+′
+′+= −

( ) ( )jkPpikF
Sj

ij ,
~

, ∑
∈

= , Sik ∈=  ,...,2,1 .

Hence for stabUu ∈  it follows that

( ) ( ) ==
∞→

uixJuixJ N
N

,,lim,, 00,000

−000 ,),0(
~

xxiP

( ) ( )( ),)(.)()(,
0
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(16)        ( )( ) )00 )0(,)0()(.)( irxxkrkLku ==− .

So

(17)           ( ) ( ) 00000 ,,0
~

,, xxiPuixJ ≥ .

Now consider
(18)            ( ) ( ))(,~ krkLku = ,
where

( ) ( ) ( ) ( )( )
( ) ( ) ( ),,,1,                                       

,,1,,),( 1

ikAikFikB

ikBikFikBikRikL

+′
+′+= −

( ) ( )jkPpikF
Sj

ij ,, ∑
∈

= , Sik ∈=  ,...,2,1 .

Substituting this in (16), we obtain
(19)          ( ) ( ) 00000 ,,0~,, xxiPuixJ = .

Combining (17) with (19) gives

( ) ( ) 000000 ,,0,,0
~

xxiPxxiP ≤

that in turn implies

( ) ( ) 000000 ,,,,
~

xxikPxxikP ≤

by Lemma 1. Since the solution ( )iP ,⋅  is
simultaneously maximal and minimal, so it is
unique. The proof is now complete.
From this theorem follows that if the system

(1), (2) is optimizable and the pair ( )QA,  is

detectable then the pair ( )BA,  is stabilizable.
Having in mind this fact and combining
Theorem 2 and Theorem 3 we have the
following corollary.
Corollary If the pair ( )BA,  is stabilizable and

the pair ( )QA,  is detectable then the coupled

difference Riccati equation has unique
nonnegative and bounded solution, the optimal
control is given by (8) and the close loop
system is stable.

4. Conclusions
In this paper we have solved the discrete time-
varying JLQ problem on infinite time interval.
We have shown that the solution exists if and
only if the coupled difference Riccati equation
has nonnegative and bounded solution. If in
addition the system is detectable then the
solution is unique and the optimal close loop
system is stable. In the time invariant case this
results generalise the existing results for
discrete JLQ on infinite time interval.
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