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Abstract: Systems, whose parameters or working conditions are subject to abrupt changes can be naturally
modelled as jump linear systems. Because of their numerous applications in tracking, fault-tolerant control,
manufacturing processes and robotics, such systems have drawn extensive attention. This paper is concerned
with the optimal control of time - varying, discrete - time linear systems whose parameters are dependent on
time and finite-state Markov processes which is directly observed. The cost functional to be minimized is the
infinite-time horizonte quadratic cost. The solution of this time-varying jump linear quadratic control problem
relies on study of nonnegative definite global and bounded solution of coupled difference Riccati equation.
Necessary and sufficient conditions for existence of such a solution are obtained in terms of optimizability and
detectability. Moreover the condition of the optimal close-loop system are established. In the time invariant
case this results generalize the existing results about discrete JLQ on infinite time interval.. The more redistic
case in which we have only partial observation of the Markovian parameter is objective of further researches.
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1. Introduction

Consider discrete-time  linear system  with
Markovian jumps, modeled by

@ x(k +1) = Alk,r(k))x(k) + B(k,r (k))u(k),

where the  coefficient matrix  functions

with Q:N"S® R"” and R:N" S® R""
such tha Q(k,i)=Q¢k,i), Qlk,i)3 0,
Rk,i)=R¢k,i), Rk,i)>0 for all
(k,i)] N" S and Q(xi), R(xi) and R*(xi) are

A:N"S® R"", B:N" S® R"™ are such
that A(xi) and B(xi) are bounded for each i1 S,
x(k) denotes the state vector, u(k) is the control
input, and the abrupt changes are incorporated into
the model via the Markov chain r(k) taking values
in a finite st S and constant probability matrix
P= (pij )i,jT S ,where
p, =P(r(k +1)= j|r(k) =i).
Subject to (1) we consider the minimization of

3(%o,ig ) = E?él ((Qlk,r(k))x(k), x(K)) +

+ Rk, (k))u(k), u(k)[x(©) = %7 (0) =iy)

2

bounded for each i1 S.In(2) X isthe solution of
(1) with control u belonging to U such that
u(k) =j (k,x(k),r(k)). Together with the
problem (1), (2) we adso consider the optimal
control problem on the finite time-interval [O, N].
In this case the cost functional takes the form

(3)
T (%eriort) = EGA (Qlk,r())(K) X(k)) +

+<R(k,r(k))u(k),u(k)>+<F(r(N))X(N),x(N)>+

IX(0) = X,,7(0) =1 ),
where F:S® R"" is such that F(i) = F¢i),
F@)3 Ofordlil S.



Discrete time invariant version of JLQ
problem was solved for finite time interval in [2].
In [1] the case where matrix A is not dependent on
the Markov process is examined. Necessary and
sufficient conditions were given for the existence of
steady-state solutions with finite expected cost for
the discrete time invariant JLQ problem in [3] and
[6]. Finaly in [4] the most general solution of
discrete time invariant JLQ problem is presented
when the space of values of the Markov chain is
countable infinite under the assumption of
stochastic stabilizability and stochastic
detectability. To our knowledge the genera time
vaying JLQ problem has not been treated
elsewhere. Its significance results from the fact that
linear model of the system is usually found basing
on linearization of the rea world nonlinear process
aong the given trgectory and therefore its
parameters are time-varying.

The solution of discrete time varying JLQ
on finite interval is given by the following theorem.
Theorem 1 The optima control for the control
problem (1), (3) isgiven by
(@) u(k) = - L(k,r(k))x(k),
where

L(k,i) = (R(k,i)+ Bdk,i)F (k +1,i)B(k,i))*
BEk,i)F (k +1,i)A(k,i)
F(k,i)= gsp” (K, i), k=N,...ky,iT S

and P, (k,i), k=N,...k,,iT S aregiven by the
following coupled difference Riccati equation
PN(N’I):F(I)1

P, (k- 1,i) = Ak,i)F (k,i)A(k,i)-

©) . . :
Agk,i)B(k,i)L(k,i),

k=N,...k,,iT S.Moreover

(6) Jk N( O’G)=<PN (kO’iO)XO’XO>'

2. Optimizability and Existence of
Solution of Coupled Difference

Riccati Equation

The primary concern in this section is to establish
sufficient and necessary conditions for the
existence of optimal control for the problem (1)-
(2). For this purpose we need the following Lemma
whose counterpart for analogue for processes
without jumpsis well known [5].

Lemma 1 If P®(k,i) and PP (k,i) are solution
of (5) such that O£ P®(N,i)£ PP (N,i), il
then P (k,i)£ PP (k,i), k=N,...k,,iT S.
Proof. Fix ki {N,..k},il S, x1 R" and
denote by J,E”N(XO, iy,u) and J,Ef?N (XO,IO,u)cost
functiona (4 with F(i)=P®(k,i) and
F@i)=P®(k,i), il S, respectively. Using
PO (N,i)£PP(N,i), i1 S it follows easily that
IO (Xorigu) £ IO\ (Xo,i,u). s0 by (6) we
conclude that

(P (ko). %) £ (P (ko )%, %) -

Because K, isarbitrary the proof is complete.
Definition The system (1) with cost functiona (2)
is called optimizable if, for every fixed i,1 S and

X, R" there exists control u such that

I(Xg,ig,U) <¥ .
Theorem 2 If the system (1), (2) is optimizable
then the limits

(7) lim P, (k,i)=P(k,i)

exissforal k=12,..., i1 S, where P, (ki) is
the solution of (5) with terminal condition
P.(N,i)=0, iT S, P(k,i) satisfies the equation
(5). Moreover P(k,i)=P¢k,i), P(k,i)3 O for all
k=12.., i1 S and P(k,i) is the minima

nonnegative definite global and bounded solution
of (5) and the optimal control is given by

8 (k) =- L(k, r(k))x(k),
where
L(k.i) = (R(k,i)+ Bdk,i)F(k +1,i)B(k,i))*
BEk,i)F (k +1,i)A(k,i)
Fki)=& p,Pk, j), k=12..,i1 S

jiis

I(X,,i,0) = (P P(0,i, )%, X, )-

On the other hand, if there exists nonnegative
definite solution of (5) global and bounded than (1),
(2) is optimizable.

Proof. For O£N,£N, fix k,1 {1..,N},

ioT S, XOT R" and consider the cost functionals
JkO,Nl(Xo’io’U) and ‘]kg,Nz(XO’iO’u) both with

F(i)=0, iT S. Then it follows easily from the
form of the cost functiona that

and



i, (Koo 1) £ 3y, (%.10,u)
and from (6) we conclude that
(9) <PN1(k0’i0)X0’XO>£<PN2(k0’iO)XO’X0>'
By (6) and the optimizability condition we
conclude that thereis a constant ¢ > 0 such that
(10) Py (ki) <c
foral N, il S and k=1..,N. From (9) and
(10) we conclude that the limit in (7) indeed exists
and P(k,i)=Pdk,i), P(k,i)3 0 foral il S
and k=1 2,....Moreover because the constant in
(10) does not depend on K, P(k,i) is bounded for
al i1 S. From (7) we see that P(k,i) indeed
satisfies (5). Next we shall show that P(k,i) is the
minimal nonnegative definite solution of (5) which
is bounded. Let L(k,i) be another bounded
nonnegative definite solution of (5), and denote by
P,(k,i), k=1..,N, il S the solution of (5)
with Py (N,i)=L(N,i). Since the solution is
unique and, since L(k,i) satisfies (5) we have
P,(ki)=L(k,i) for al k=12..,N, il S.
Furthermore, it follows from Lemma 1, together
with

0=P,(N,i)£P,(N,i)=L(N,i),
that
) P, (ki)E P, (ki)=L(k,i)
foral k=1..,N,il S.Combining (7) with (11)
gives

P(k,i)£ L(k,i).

To solve the optimal control problem fix N,
io] S, x,T R" and consider the cost functional
IO (%,ig,u) with F(i)=0, il S and
I8 (%g,ig,u) with F(i)=P(T,i), il S. Then
apply to (1) the control (8) and use the fact that
IO (Xo,ig ) £ IR (Xg,ig,u) and that T is
optimal for 3¢, (x,,i,,u). We see that
Jé,lr)u(xo’io’G)E Jc(),zrz(XOaio’G)=<P(O’i0)X0aX0>’
but the right hand side does not dependent on N, so

(12) I(xg,i0,T) = lim IGA, (%10, 0)=

<P(O,i0)x0,x0> .
On the other hand we have

(13) I(%,i0, ) = lim I, (%5,10,T) ®

lim (P, (O,io)xo,x0> = <P(O,i0)x0,x0> .

N® ¥
(12) together with (13) shows the optimality of U .
Now suppose that there exists nonnegative
definite and bounded solution P(k,i) of (5). Fix
i, S, X, 1 R".Thenapply the control
u(k) =- Lk,r(k)x(k),
where
L(k.i) = (R(k,i)+ Bdk,i)F(k +1,i)B(k,i))*
BEk,i)F (k +1,i)A(k,i),
Fki)=a p,Pk, j), k=12..,i1 S
i
to (1) and use t;; facts that
I (%110, U) £ I (%61, 7)
and that T is optimal for J$2, (x,,is,u) we have

Jé,lr)u (Xo’io’U) £ Jé,z& (Xo’io’U)=<P(O’io)Xo’Xo>
but the right hand side does not depend on N, so

3otio) = lim I8, (11,0

<P(O,i0)XO,X0>
that means that the system (1), (2) is optimizable.
The proof is now complete.

3 Detectability and Uniqueness of
Solution of Coupled Difference
Riccati Equation
The main objective of this section is to find the
sufficient conditions for the existence and
uniqueness of nonnegative definite global and
bounded solution of coupled difference Riccati
equation (5) and sufficient conditions for stability
of the optima system. To formulate such a
condition we need the following definitions.
Definition 2 The jump linear system

x(k +1) = Ak, r (k))x(k)

is stable, if for any (x,,i)1 R"" S
¥ ..
EGA [XO)|X(0) = %1 (0) =i 2< ¥,
€i=0 g

In this case we call the function A:N”~ S® R""
stable.

Definition 3 The jump linear system is stabilizable
if for any (X,.,i,)T R"" S, there exists a linear
feedback control u(k) = F(k,r(k))x(k) such that
the function F (i) is bounded for adl il S and
the close loop system is stable. In this case we call



the pair (A B) of functions A:N” S® R""
and B:N" S® R" ™ sabilizable.
Definition 4 The jump linear system

x(k +1) = Ak, r (k))x(k)

y(k) = Clk.r (k))x(k)

is detectable, if the pair (A',C") is stabilizable. .
In this case we cadl the pair (A,C) detectable.
Definition 5 The nonnegative global and bounded
solution P(xi), i1 S of (5) is caled stabilizable
solution if the system (1) with control

u(k) = - L(k,r(k))x(k),

where
L(k,i) = (R(k,i)+ Bdk,i)F (k +1,i)B(k,i))*
BEk,i)F (k +1,i)A(k,i)
and
F(k,i)= é p, Pk, j), k=12..,i1 S
isstable. "

The proofs of the following two lemmas are based
on smple arithmetic transformations and we omit
them.

Lemma 2 If the function f : N~ S® R" issuch
that

ga ||f k r(k) X(O) =x0,r(0):iog<¥ ,
2

for each (x,,i,)T R"* S and A:N" S® R""
is stable then the solution of equation

x(k +1) = Ak, r (k))x(k) + f (k,r(K)),
with initial value X(0) = X, satisfies

ga RO

Lemma 3 Suppose that P(xi), il S is the

nonnegative definite global and bounded solution
of (5. Then for every u and for Al

(x,,i,)T R"" S thefollowing holds
Jon (Xo’io’u):<P(0,io)Xo,Xo>'
E(P(N, g )X(N), X(N))X(0) = X (0) = g )+

Eg%i (R(k, r (k) (u(k) - L(kr(K)))
(u(k) - L{kr(K)))]X(0) = %,.,7(0) = i),

X(0) = X,,r(0) = |0—<¥
@

where
L(k,i) = (R(k,i)+ B&k,i)F (k +1i)B(k,i))*
BEk,i)F(k+1,i)Alk,i),

F(ki)=a p,Pk,j), k=12,..,iT S,

iis
and Jg  (Xo,i0,U) is given by (3) with F(i) =0,
ilTs.

The next Theorem contains the main result
of this section and is one of the most important
contribution of this paper.

Theorem 3 Assume that the system (1), (2) is
optimizable and the pair (A\/a) is detectable.

Then the Riccati equation (5) has a unique
nonnegative definite and bounded solution.
Moreover this solution is a stabilizable one.

Proof By Theorem 2 we know that there exists

nonnegative and bounded solution P(%),iT S

which is the minimal solution. We first show that
under the control given by (8) the close loop system

is stable. Let F:N° S® R"™™ be such that
F(xi) is bounded for al il S and A+FC is

stable. Then the solution X of (1) which
corresponds to the control given by (8) satisfies
(14)

X(k +1) = (A(k, r (k) + F (k,r (k)))X(K) + f (k)

where

f (k) = B(k,r (k))a(k) - F(k,r))C(k,rk))x(k).

It follows that
| £ 00| £ Bk, r (<) k)] +
[F (k. r () ck, r ()[R 0| £

;_n<R(k, r(K))a k), R(k, r (k))a(k)) +

m(,/Q(k, r (K))X(k),/Q(k, r (k) 5i(k)> £
d ((R(k, r (k))ak), R(k, r (k))& () +
a5 (Vk R, Ak (RR())),

where d= maxg?, m9 ||B(k,i)||2 <m,
e

IF(k,i)* <m, and sI <R(k,i), (k,i)T N S.
From (15) we have

Ec;% f(k)|§(0)=x0,r(0)=i09£dJ(x0,i0,G):
g

€k=0
d(P(0,is )%, X%,) £dn|[x,|”,
where O£ P(k,i)£nl, (k,i)] N” S. By this

inequality and applying the Lemma 2 to (14) we
have



ga [%(k)

that proves the stability of the close loop system.
Next we show that under the detectability condition

the stabilizable solution P(xi) of (5) is a maximal
solution. Fix (x,,i,)] R""'S and denote by

U, the subset of U consisting of such control

u, that the corresponding solution X of (1)
satisfies

lim EQ ()| ‘X(O) Xo,r(O)—l)

Let P(>,<|) be any nonnegative definite and
bounded solution of (5). From Lemma 3, we have

Jon (Xorior 1) = (F(0,ig) %y X, ) -
E(< )X(N),X(N)>‘X(O) =X, (0) = i0)+
& (Rlkr()ut) - Lkr ()

(U() - LkrRNIXO) = %, (0) =),

V%0 = 0,1 (0) =i, 2<¥
(%]

§3z

=

where

L(k,i) = (R(k,i)+ B€k,i)F (k +1i)B(k,i))*
Bek,i)F (k +1,i)Alk,i),

F(ki)=a p,Pk j), k=12..,iT S.

Hence for JuT U, it follows that

3(%p1iq,u) = lim 3o, (%g,i,) =
<|5(O,i0)XO,XO>-

Eg (R(k,r(K))(u(k) - L(kr(K)))

19 (U~ LkrRMIXO) =%.r(©0) =i, ).

So

@ o) (POioJo, %)

Now consider

(1:?) a(k) =

L(k,i) = (R(k,i)+ B€k,i)F (k +1i)B(k,i))*
Bek,i)F (k +1,i)Alk,i),

k,j), k=12,.,il S.

L(k,r(k)),

Fki)=a p, P(

jiis

Substituting thisin (16), we obtain
(19) J(XOaio’G):<P(O’io)Xo’Xo>'

Combining (17) with (19) gives
(P(01io)x: %) £ (P(0/ig )%, %)
that in turn implies
(Plicio %0, %) £ (P(k,ig ), %)

by Lemma 1. Since the solution P(xi) is

simultaneously maximal and minimal, so it is
unique. The proof is now complete.
From this theorem follows that if the system

(1), (2) is optimizable and the pair (A/Q) is
detectable then the pair (A, B) is stabilizable.

Having in mind this fact and combining
Theorem 2 and Theorem 3 we have the
following corollary.

Corollary If the pair (A, B) is stabilizable and

the pair (A, JQ ) is detectable then the coupled

difference Riccati equation has unique
nonnegative and bounded solution, the optimal
control is given by (8) and the close loop
system is stable.

4. Conclusions

In this paper we have solved the discrete time-
varying JLQ problem on infinite time interval.
We have shown that the solution exists if and
only if the coupled difference Riccati equation
has nonnegative and bounded solution. If in
addition the system is detectable then the
solution is unique and the optimal close loop
system is stable. In the time invariant case this
results generalise the existing results for
discrete JLQ on infinite time interval.
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