Tools for the PWL approximation of continuous functions
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Abstract: In this paper, a continuous function approximation methodology is proposed using
the High Level (HL) Canonical Piecewise Linear (CPWL) expression introduced in [1]. We

consider the case where a finite set of measured data is available, and we use a min-max

optimality criterion.

Also, an application to the characterization of uncertain nonlinear

functions is shown. A salient feature of the methodology is that the approximation problem

is reduced to a linear programming problem.
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1 Introduction

Continuous piecewise linear (PWL) functions have
been widely used for function approximation, spe-
cially since the introduction of the canonical expres-
sion by Chua (see [2] and [3]). The use of a canon-
ical expression is of fundamental importance from
the numerical efficiency standpoint (it possesses the
minimum number of parameters required). Several
approximation techniques have been developed us-
ing the CPWIL expression introduced by Chua. In
[4] an algorithm was proposed to alternately adjust
the parameters of the function. In [5] a gradient algo-
rithm was proposed in the context of digital filters.
Finally, in [6] a Newton-Gauss algorithm was pro-
posed, where, in contrast to [4], all the parameters
were adjusted together.

One limitation of the canonical representation intro-
duced in [3] is that it only permits to represent a par-
ticular set of all the PWL mappings with domain in
R™. More specifically, those satisfying the consistent
variation property [7]. In [1] and [8], a HL. CPWL
representation was proposed for the family of all the
continuous PWL mappings defined over a simplicial
partition of a domain in R™. This representation is
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able to uniformly approximate any Lipschitz contin-
uous function defined on a compact domain. More-
over, in contrast to neural networks or fuzzy approx-
imations, if the Lipschitz constant of the nonlinear
function is known, it is possible to calculate the num-
ber of terms required to obtain a given error.

In this paper, an approximation methodology for the
approximation of continuous functions is proposed
using the HL. CPWL expression introduced in [1]. We
consider the case where a finite set of measured data
is available, and use an optimality criterion based
on the minimization of the maximum error (over the
data set), as it is explained in section 3. After this,
in section 4 an application to the characterization of
uncertain nonlinear functions is shown. In this case
an “upper” and a “lower” PWL function are used to
optimally describe the set of all the possible values
of the uncertain function.

A salient feature of the methodology is that the ap-
proximation problem is reduced to a linear program-
ming problem, for which efficient solution algorithms
exist (see [9][10]).

1.1 Definitions

The notation of [1] is adopted for this paper.

Definition 1 (Intersection) In a partition of the
domain S C R™, an n — 1 dimensional hyperplane
(boundary) is said to be a first order intersection,



denoted by SN . A linear manifold of dimension n—
k in'S is a k-th order intersection S5 if it is the
intersection of two or more linear manifolds of type

Sk=1) e,

=1

2 Overview of HL CPWL func-
tions

Here some basic results on HL. CPWL are described.
For further details, the reader is referred to [1].
Let S be a rectangular compact set of the form

7n}} ?
(2.1)

where ¢ is the grid size and m; € Z,, and consider a
simplicial partition ([11][1]) produced by a boundary
configuration H (The set of vertices or §(") intersec-
tions associated to S will be noted as V).

S:i={(x1, .y n) 1 0 <2y <myd,i €{1,...

If addition and multiplication by a scalar r € R! are

defined as

a) (f+9)(z
b) (r-f)(2)

then the space PW Ly [S] of all continuous PWL
mappings defined on S with the boundary config-
uration H is a linear vector space.

In [8] a set of HL. CPWL functions which are a basis
of PW Ly [S] was found. The building block of the

basis is a generating function

(z) +
T f()VZES

V(s ee) = [lmal 4ol = [met el o)
+l=z1] + |wo| = [—21 + 24 '
Based on (2.3), a set of functions 7° (z) = z, 7! (z) =
3(2,2), 7> (01,22) = 7 (21,22) and in general

~H(a, ,wk)) . (2.4)

v (ey, e ar) = (xl,’yk
is introduced. A distinctive property of (2.4) is that
it possesses k nestings of absolute value functions,
and accordingly it is said to have nesting level (n.l.)
equal to k.

The elements of the basis follow from the composi-
tion of the functions v*(-,...,), & = 0,1,...,
the set of functions

n with

S = {17$k _jk(s}v

where £ € {1,..,n} and j; € {0,....,mr—1}. In
addition, they can be expressed in vector form as
T
A= [AOT,...,A”T] , (2.5)

ordered according to its n.l., where A® is the vector
containing the n.l. = 7 functions.
f € PWLg[S] can be written as

fla)=cTA(2),

Accordingly, any

T T T T :
where ¢ = [co,cl,...,cn] , and every vector ¢; is
a parameter vector associated to the n.l. = 7 vector

function A,

3 Optimal Approximation

When an experimental system is under study, the in-
formation which describes its behavior is generally a
finite set of input and output data measurements. If
we want to find a function that fits the collected data,
first it is necessary to specify the structure of the
function and then a criterion must be chosen to se-
lect the best approximation. With this idea in mind,
the approximation problem is stated as follows.

We assume that a set of points

7$m} (3'1)

is available, where 2; € S, V¢ = 1,...,m and S is
a compact set of the form (2.1). In addition, S is
partitioned with a simplicial partition with grid size
6. Associated to X, there is also a set of function
values

X = {$1,

F={fi,.c, [}

which can be thought as the values of a function

(3.2)

f : S+— R! whose explicit expression is unknown,
but it can be measured, and accordingly f; = f(z;),
1=1,...,m

A HL CPWL function f, € PW Ly [S] is proposed
to interpolate the values (3.2).
used is the minimization of the maximum error

The criterion to be

max | fo (25) = fil

7

(3.3)

over all the points of the set X. This leads us to
state the following optimization (min-max) problem:

€M (fva)

min

(3.4)
fpEPWLE[S]



subject to
e (fp, X) = max[fi — f, (2:)]
Note that any f, € PWLpy[S] can be written as

fo () =c'A(2), c € R%. Then, (3.4) can be formu-
lated in the equivalent form

fi — cTA (x;)

} (3.5)

min {max
CERq l’zeX

Next lemma shows the main result of this section.

Lemma 1 Let X, Fy, H and S as described above.
The problem (3.5) can be stated as the linear pro-
gramming problem

min A

subject to

—cTA (acl) — A< —fi,Vo; € X
A (acl) - A< fi,Ve, e X
A>0

on the parameters ¢ and .
If we define

fi — A (z;)

A = max
r,eX

it is direct to see that

fi— ¢TA(25)| < A Va; € X.

This equation can be written as

+(fi = A (20)) <A Va; € X »
_(fi—cTA(xi))gA,ineX (3.6)
Then, the problem (3.5) can be stated as the mini-
mization of A subject to (3.6) and A > 0, which is
the condition stated by Lemma 1.

Remark 1: The PWL function f is uniquely de-
termined by the function values on the vertices of
the domain S. In other words, there is a one to
one relationship between the elements of the coef-
ficient vector ¢ and the ¢ (= [l (1 + m;)) val-
ues of f over the vertices of S, i.e. the values
{f(z;),i=1,2,....,¢:x; € Vg}. With this idea in
mind, the stated approximation problem has the fol-
lowing alternative interpretation. Given a set of
points X arbitrarily distributed over a domain S and
its associated set of measurements £, find the “best”

0.6

Figure 1: Data and approximation

or the more representative set of function values cor-
responding to a set of equidistant points (which are
the vertices of the partition). This is a problem of
data reduction which usually appears in identifica-
tion problems when large amounts of measurements
are stored from an experiment.

Fxample 1:  Consider the function f(z) =
sin () cos (z), defined over the domain

S:{xERI:—lgxgl},
and a set of points
X ={z;€S:2;,=k-0.04}

with k£ € Z.

Using the criterion (3.5) a PWL function ¢ : S — R!
of the form ¢’ A (z) with a grid step § = 0.25 was
obtained.

The resulting parameter vector is:

¢ =[—0.4617,—0.1863,0.5148,0.3854, 0.2591,
0.0101,—0.2439, —0.4106, —0.5148]7;

and the value of the maximum error, A = 7 x 1073.
Fig. 1 shows the function values belonging to the
set F' (dots) and the PWL function g. Fig. 2 shows
the error between both functions and the upper and
lower bounds given by A and —A.
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Figure 2: Approximation errors

4 Application to Robust Approx-
imation

In the previous section a method was obtained to
interpolate a function using a single PWL function
f € PWLgI[S]. In this section, the function mea-
sured is assumed to be uncertain. To clarify this
point, consider a set of data points X as (3.1) and
an uncertain function defined as a member of the
family of functions

S={f:S=R":f(2)=fn(x)+A)}, (4.1)

where fy is a nominal function and A satisfies
sup,es ||A(2)]] < K. In addition, let us consider
that a set F' = {fi,..., fn} of measured values of
members of & over the points of X is available, i.e.,
fi= f(xz), fess xS

We search for an “upper” function fo € PW Ly [S],
and a “lower” function f; € PW Ly [S], satisfying

fi(z;) < fa) < fo(ay) Vo, €8,

to characterize the uncertain function, in the sense
that

J(@i)=afi (@) + (1 - a) f2(2:)
Ve; € X, f €S, where 0 < a < 1. In addition, it is
also desirable that the “band” defined by these two
functions is as narrow as possible. This is equivalent

to find the two functions f; and f, that solve the
following optimization problems:

Problem 1:

el o {;ﬂg fi = h (fm)l} (4.2)
subject to
fi—fi(zi) 20
Problem 2:
L. {;ﬂg fi = f2 (fm)l} (4.3)
subject to

fo(z;)) = f; >0

The solutions to these problems can be presented
as linear programming problems as it is stated in
the following lemma. Before that, consider that
the upper and lower functions have the expressions

fi(z)=clA(z) and fo(2) = I A(2).

Lemma 2 Let X, Fy, H and S as described above.
The problems (4.2) and (4.3) can be stated as the

linear programming problems

i) min Aq
subject to
—cfA () - M < —f, Vo, € X
—C?A (902) > —fi, Vo, € X
AM2>0
and
i7) min Ag
subject to

C%A (acl) — X< i,V € X
CgA (902) > fi,Vx; € X
Ay >0

on the parameters ci, ¢o, A1 and ;.

It can be directly inferred from the proof of Lemma
1

FErample 2:
(4.1) is considered. Intentionally the same function
of the preceding example is chosen for fy (fv =
cos(x)sin(x)). The uncertainty term is A(z) =
g cos (8x), with 0 < 5 < 0.2. The domain is

In this case a function of the form

S:{xERI:—lgxgl},



Figure 3: Data, lower and upper HL. CPWL func-
tions

and the set of points is
X ={z; € S:2;=k-0.025}

with k € Z. The function set F was obtained using
randomly selected functions of & evaluated over the
points of X.

Using the criteria (4.2) and (4.3) two PWL functions
g1,92: S — R of the form ¢] A (z) and ¢ A (2), with
a grid step 6 = 0.25 were obtained.

The resulting parameter vectors are :

c1 = [-0.5271,0.0227, —0.5055, 1.3094, 0.9155,
—1.4874,0.3786,0.4384, —1.3291]7,

¢y = [—0.3057,0.0227, —0.5055, 1.3094, 0.9155,
—1.4874,0.3786,0.4384, —1.3291]7.

The upper and lower bounds are Ay = Ay = 0.2214.
Fig. 3 shows the function values belonging to the
set F' (dots), the PWL functions ¢; and g2 (solid
lines) and also the extreme functions f 4 0- A and
f+0.2-A (fine lines). Fig. 4 shows the errors f (z;)—
g1 (z;), and f(2;) — g2 (2;), Ya; € X, together with
the bounds A1 and Aj.apro3 erro3

5 Final Comments

A methodology has been proposed to approximate
continuous functions using HL. PWL functions, when

-0.15

0
A

Figure 4: Approximation errors

{

f-92

a finite set of input and output measurements is
available. The approach can also be used to com-
press information into a grid of equispaced points
when large amounts of data are collected from ex-
perimental setups, as discussed in Remark 1.

An optimality criterion is used which leads to a linear
programming problem. This is an important prop-
erty of the method, provided that this type of opti-
mization can be solved by efficient numerical algo-
rithms.

An application to the characterization of uncertain
functions has been proposed. The scheme produces a
pair of optimal lower and an upper HL. CPWL func-
tions which define a “band” containing all the mea-
surements values. As exposed in [12], this can be
useful in topics like robust system identification .
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