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Abstract : - Adaptive control is often used to control systems subject to unknown external disturbance and
whose parameters may be uncertain and/or time-varying.  In this paper, two adaptive control architectures,
featuring both real time plant modeling and disturbance canceling, are compared.  The two adaptive control
architectures include (a) self-tuning regulator and (b) plant disturbance canceler with two methods for
controller tuning and three dithering schemes for plant identification.  A linear mass-spring-damper system of
two DOF is chosen for comparing performances of these adaptive control systems for vibration isolation.
Numerical simulation results show that the self-tuning regulator outperforms the plant disturbance canceler in
terms of much faster convergence rate and much more amount of vibration isolated.
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1  Introduction
Feedback control with a fixed controller has been of
popular interest for a long time and its successful
applications can be found in a wide variety of
engineering disciplines.  The controller is usually
designed based on the model of the controlled
process (plant) and known operating conditions.
However, control with a fixed controller may not
always give satisfactory performance as is designed.
The difficulty arises because of the possible
changing properties of controlled processes and their
signals, parameter uncertainty, and/or existence of
unknown disturbances.  Adaptive control is
therefore needed in such systems to modify their
behavior in accordance with the aforementioned
conditions.  An adaptive control system is
characterized by the two complementary processes
of identification and control.  In the process of
identification a suitable model is developed online
that exhibits the same input/output characteristics of
the controlled process.  Based on the identified
model and control/performance objective, the
controller is updated and a control action is
generated and tested on the plant in the control
process.  In other words, the adaptive control system
can be viewed as an automation of plant modeling
and controller design, in which the plant model and
controller are updated at each sampling period.

     In this paper two types of adaptive control
architectures are to be compared for disturbance
canceling of a disturbed system with uncertain
and/or time-varying parameters.  More specifically,
the adaptive control system should perform two
functions: it learns about the controlled process
online whilst, at the same time, controlling its
behavior (disturbance canceling in this case).
Among the various types of adaptive control
architectures that can do the job are the self-tuning
regulator (STR) of Astrom and Wittenmark [1,2]
and the adaptive plant disturbance canceler (PDC)
derived from Widrow and Walach [9] and Shaw
[7].  The self-tuning regulator is the best-known and
most popular adaptive control method, which is just
a direct integration of an identification and a
controller design algorithm in such a manner that
the two processes proceed sequentially.  The
adaptive plant disturbance canceler has various
forms of structures due to the three dithering
schemes for real-time plant identification and an
offline (Widrow and Walach [9]) and an online
(Shaw [7]) process for the controller tuning.
Though the adaptive PDC has a quite different
control architecture as the STR, it functions much
the same as the STR, i.e., real-time plant modeling
and disturbance canceling.  Therefore it is of
interest to compare performances of the two



adaptive control systems in canceling the plant
disturbance.
     The paper is organized as follows: in the next
section the self-tuning regulator and adaptive plant
disturbance canceler are briefly introduced.
Adaptive algorithms for real-time controller tuning
(offline and online) and plant modeling are also
given, where three dithering schemes for online
plant identification of the PDC are employed.  In
the third section both adaptive control architectures
are evaluated for vibration isolation of a linear
mechanical system by numerical simulations.
Conclusions of the paper are presented in the fourth
section.

2   Self-Tuning Regulator and Plant
Disturbance Canceler
In this paper, a linear system disturbed by an
unknown external disturbance d(t) and controlled by
an actuating signal u(t) with uncertain-but-fixed
system parameters is considered.  The two adaptive
control architectures are employed for plant
disturbance canceling.  Figure 1 depicts the first
adaptive control architecture employed for
disturbance canceling, which is a generic diagram of
the self-tuning regulator of Astrom and Wittenmark
[1,2].  The STR works in the following way.  The
plant output y(t) contains a response to input u(t),
plus a response to plant disturbance d(t).  A plant
estimator, receiving both the signal input and signal
output of the plant, estimates the plant parameters.
These estimates are then fed to an automatic design
algorithm that sets the parameters of the controller.
Note that many different identification schemes
have been used.  Among these the recursive least-
squares (RLS) [5] algorithm has proved to be the
most useful and practically successful self-tuning
identifier.  Note also that it is possible to
parameterize the plant directly in terms of the
control law parameters.  If this is done, the design
calculation necessary to determine the control law
becomes essentially trivial.  That is, a direct
adaptive algorithm is adopted.
     In this paper, the plant is described by an
ARMAX model [5] (i.e., a stochastic auto-
regressive moving-average model) whose output is,
in the discrete-time domain,
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are the estimated system parameter vector and
regression vector composed of the selected plant
output and input variables, respectively.  The RLS
algorithm for plant parameter estimation is adopted
as follows:
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     For the controller of the STR, the minimum
variance controller [3] is adopted.  The basic idea
behind the controller is to form an adaptive
prediction of the plant output and then to determine
the input by setting the prediction output equal to
the desired output.  This is essentially the same
philosophy as the one-step-ahead controller.  For the
one-step-ahead controller, the control law based on
minimum variance is
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from which the control input is obtained:
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The desired output )(* ty  is of course identically
zero if disturbance canceling is desired.  Note that
there is a remote possibility of division by zero in
Eq. (7), which can be avoided by imposing
constraint on the size of )(1 t .  This is done as
follows, with knowledge of the sign and lower
bound on the magnitude of 1 :
If



)(1 t sign 1 < | 1 | min                      (8)

then
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Another important practical point is that the control
input in Eq. (7) can call for large input signal due to
any large change in system parameters or in )(* ty .
In this case, the control law can be modified as
follows:

If )(tu  > maxu , then max)( utu             (10)

If )(tu  < minu , then min)( utu              (11)

where maxu  and minu  are the specified maximum
and minimum input levels.
     Another adaptive control architecture that can
cancel plant disturbance is the plant disturbance
canceler by Widrow and Walach [9], as shown in
Figure 2.  Online plant modeling is achieved by
introducing an external dither )(t to the system and
controller tuning is accomplished by an offline
adaptive algorithm (requiring another dither signal).
Widrow and Walach have shown that no other linear
system, regardless of its configuration, can reduce
the variance of the plant disturbance to a level lower
than that of Figure 2.  In fact, it can be readily
shown [7] that the transfer function from
disturbance d(t) to system output response y(t) is
identically zero if the plant model and controller
exactly match the plant actuation dynamics (from
u(t) to y(t)) and its inverse, respectively.  More
specifically, the system output response subtracted
from the plant model output represents response of
the system due to disturbance only.  By utilizing this
response, the controller is then used to compute the
negating force u(t) to negate effects of the
disturbance on the system.  Complete plant
disturbance canceling is thus achieved.
     There are, however, other forms of adaptive plant
disturbance canceler due to the three dithering
schemes for plant modeling [9] and an online
controller tuning method [7].  These are shown in
Figures 3-5, which are just the combinations of the
three dithering schemes for plant modeling [9] and
the online controller tuning method of filtered-x
LMS algorithm [7].  Of the three dithering schemes
for plant modeling, scheme A (see Figure 3) has the
simplest form which is effective when the controller
output is a stationary stochastic process and the
independent dither is added to achieve a desired

spectral character for plant input u(t).  However,
when the controller output is nonstationary (which is
truly the case with the adaptive plant disturbance
canceler architecture), one may be better off not
including it at all in the plant modeling process.
This is when dithering schemes B and C (see
Figures 4 and 5) come to play, both of which using
dither exclusively in effecting the adaptive plant
modeling process.  The purpose is to assure known
stationary statistics for the input modeling signal.
Using scheme B with a white dither, the mean
square error will be minimized when the impulse
response of the adaptive plant model exactly
matches that of the plant over the duration span of
the model's impulse response.  Note that dithering
scheme B has larger minimum mean square error at
the adaptive plant model output than scheme A has,
due to the additional power of the controller output
after propagating through the plant.  To compensate
for this power, an extra plant model with controller
output as the input signal needs to be included, as
shown in scheme C.  Scheme C thus has all the good
features of scheme B and overcomes the drawback
of having an increased minimum mean square error,
with the cost of a somewhat increased system
complexity.
     To have a common base for the purpose of
comparing the two adaptive control architectures,
the plant model in the adaptive plant disturbance
canceler of Figures 2-5 is chosen the same as in the
STR with the same number of auto-regressive (n)
and moving-average (m) coefficients.  In addition,
the RLS algorithm of Eqs. 4 and 5 is also used for
tuning its coefficients online.  For the controller
model in the plant disturbance canceler, a finite
impulse response (FIR) filter with length l  is
adopted.  The usual least mean square (LMS)
algorithm [6] is used for offline tuning the controller
weights in Figure 2, while the filtered-x LMS
algorithm is employed online in Figures 3-5 which
has the following weights updating algorithm [7]:

 )())()(()1()( * jtxtytytgtg jj ,  j=0, 1,…,
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where  is a learning rate controlling the rate of
convergence of the adaptive algorithm.

3 An Example for Vibration Isolation
A linear mass-spring-damper system with an
attached active dynamic isolator [8] is taken as the
plant under study and is shown in Figure 6.  An



unknown external disturbance d(t) applies at the
main mass of the system and causes vibratory
oscillation at the secondary mass.  The attached
mass-spring-damper-actuator system acts as a
vibration isolator if the control goal is to minimize
the vibrational amplitude at y(t), namely, the
undesirable vibration originated from the main mass
is isolated from reaching to the secondary mass.
The power source injected into the actuator for
providing control force can be either hydraulic or
electromagnetic power source.  For numerical
simulations of the system, the following parameters
are assumed:

1.021,121,2.02,11 bbkkmm         (13)

For the plant model, an ARMAX model with
11mn  is taken in both adaptive control

architectures.  An FIR filter with 150l  is chosen
as the controller model in the adaptive plant
disturbance canceler.  The sampling period set at

05.0T  second and the unknown disturbance d(t)
for the first mode excitation are used for all the
following numerical simulations for disturbance
canceling.  Note that zero initial coefficients (or
weights) for the plant and controller models are
adopted in accordance with the presumed uncertain
system parameters.
     The two adaptive control architectures of Figures
1-5 are employed for vibration isolation of the
system. Figure 7 to Figure 11 are the corresponding
results for vibration isolation.  It is clearly seen that
the STR of Figure 1 has the fastest convergence rate
for disturbance canceling, while the PDC of Figure
2 has the worst performance.  Note also that
dithering schemes B and C have better overall
performances over scheme A in the PDC, as clearly
seen in Figures 9-11.  This is due to the fact that the
controller output is nonstationary resulting in
ineffective plant modeling for dithering scheme A.
Table 1 summarizes the final amounts of vibration
amplitude isolated from reaching to the second mass
of the five adaptive controllers at the end of 10,000
time-steps running.

          Table 1: vibration isolations
STR
Fig. 1

PDC
Fig. 2

PDC
Fig. 3

PDC
Fig. 4

PDC
Fig.5

99.9% 37.4% 76.5% 92.2% 88.2%

4   Conclusion
In this paper the STR and the adaptive PDC are
evaluated for plant disturbance canceling of a

disturbed system with uncertain-but-fixed system
parameters.  It is noted that the two adaptive control
architectures can also be applied to a time-varying
system since both plant modeling and controller
tuning can be carried out online in a real-time scale.
From numerical simulations of the mechanical
vibration system, the STR outperforms the adaptive
PDC in terms of much faster convergence rate and
much more amount of vibration isolated.  For the
adaptive PDC, online fine-tuning of the controller
with the filtered-x LMS algorithm seems superior
than using the offline tuning process by the direct
LMS algorithm.  The reason is that the online
filtered-x LMS algorithm aims to directly minimize
the plant output for disturbance canceling, while the
offline process for tuning the controller aims to
converge to the inverse plant model.  For the plant
modeling process, dithering schemes B and C,
though having somewhat complex system
configuration, improves on scheme A for the case
when the controller output is nonstationary.  For the
example studied, the adaptive PDC of Figure 4 with
the filtered-x LMS algorithm for controller tuning
and scheme B for plant modeling gives the best
performance over other PDC configurations.  Such
online controller tuning by the filtered-x LMS
algorithm and plant modeling by scheme B had also
been successfully employed by Eriksson and Allie
[4] for active noise control in a duct in a feed-
forward control configuration.
     Finally, it should be point out that the adaptive
PDC can obtain the least variance of the plant
disturbance than any other linear system (as has
been verified by Widrow and Walach [9]),
regardless of its configuration including the STR.
For instance, if system identification of the actuator
dynamics (the plant model) has been conducted
beforehand by the ARMAX model using least
square method (see Yang, et al. [10] for example)
and if the adaptive tuning is applied only to the
controller in the PDC, Figure 12 shows the resulting
vibration isolation of the PDC (and STR for
comparison).  It is clearly shown that, though the
PDC has a much slower convergence rate at the
beginning of simulation than the STR, it has
however much reduced variance of the disturbance
in the long run.
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  Fig. 1 The STR control architecture.
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Fig. 3 The PDC with online controller tuning and
scheme A
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Fig. 4 The PDC with online controller tuning and
scheme B
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                  Fig. 2 The PDC with offline controller tuning and scheme C
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Fig. 5 The PDC with online controller tuning and scheme C
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            Fig. 6 A mass-spring-damper system.



Fig. 7 Vibration isolation by STR.
Fig. 8 Vibration isolation by PDC with Figure 2 architecture.
Fig. 9 Vibration isolation by PDC with Figure 3 architecture.
Fig. 10 Vibration isolation by PDC with Figure 4 architecture.



Fig. 11 Vibration isolation by PDC with Figure 5 architecture.

Fig. 12 Vibration isolations by PDC (solid line) and STR (dotted line).


