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Abstract: Motion planning, open—loop (steering) and closed loop control synthesis for a cantilever beam
with a uniformly distributed piezoelectric actuator on the whole surface, called a piezoelectric bender
is considered. With a flatness based control design method an exact formula is derived for the control
voltage which must be applied in order to achieve a prescribed deflection in a specified finite time. This
control is given as an infinite power series the convergence of which is ensured by an appropriate choice
of the desired trajectory of the “flat” output. Experimental results are presented for the application of
the open loop control law and the closed loop control law.

Keywords: motion planning, flatness approach, vibration control, piezoelectric actuator, infinite dimen-
sional system.
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This work is concerned with the motion plan-
ning of a cantilever beam with a uniformly dis-
tributed piezoelectric actuator on the whole sur-
face. Such structures are called piezoelectric ben- i_w
ders (see Fig. 1), too. The control task is to
apply a voltage V in such a way that the deflec-
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tion achieves a prescribed deflection in a specified
finite time. The effect of the control voltage V'
in the lateral direction can be summarized as a
torque at the free end of the beam. The resulting
open loop control problem thus consists in steer-
ing a distributed parameter system via boundary
control. The derivation of the open loop control
law is based on the possibility to parametrize the
system trajectories via a time depending func-
tion. Accordingly, this variable is called flat or
basic output. Therefore, choosing the trajectory

Figure 1: The piezoelectric bender.

of this flat output, determines the evolution of
the whole distributed parameter system. Via few
Laplace transform-like symbolic computations one
can calculate a formulae for the system trajecto-
ries, including the control input, in form of power
series in the space coordinate. These series are
parametrized by the flat output together with an
infinite number of its time derivatives. Their con-



vergence can be guaranteed by a proper choice of
the flat output trajectory [3]. This trajectory will
be chosen in such a way that there results a lateral
deflection of the beam from rest to rest, and in a
finite time.

The paper is structured as follows. In the next
section, the problem is described in detail and the
mathematical model of the bender is introduced.
In Section 3 a flat output is determined and the
exact series formulae of the system trajectories
and of the open loop control law are computed.
Section 4 contains a short description of the ex-
perimental setup. Experimental results are pre-
sented in section 5 for the application of the open
loop control law. It will be shown that the mea-
surement results coincide in a good way with the
computed trajectories. Nevertheless, an open loop
control approach has some inherent problems. For
this reason we have extended our method with a
feedback law. Section 6 presents the measurement
results related to this improved approach.

2 Mathematical model

The structure under consideration is depicted in
Fig. 1. It is composed of two piezoelectric lami-
nates with thickness d, each comprising n thin lay-
ers, and the electrodes are covering the whole sur-
face. The piezoelectric bender (of length I, width
b, thickness h = 2d) is clamped at one end, free
at the other one. The piezolayers are electrically
in parallel in order to enable working with a re-
duced actuator voltage —V* < V < V't which
is applied by a power amplifier. The voltage V'
leads to a bending of the structure in the (z1,z3)-
plane. The relative displacement in the lateral x3-
direction with respect to the undeformed beam is
denoted as ug (see Fig. 2). The modeling leads
to the Euler-Bernoulli partial differential equation
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where £ is the Young’s modulus of the material,
I is the moment of inertia of the beam cross sec-
tion about the x9—axes, A = bh denotes the cross
section area and p is the mass density. The pa-
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Figure 2: The deflection of the bender.

rameters ki and I are determined by

ky =nds  BAJ2, I=0bh?/12

with the piezoelectric stress constant ds;.

3 Open loop control design

For the open loop control design, we normalize the
model. The normalized equations are obtained by
introducing the dimensionless space variable z via
[z = x1 and the dimensionless time 7 by

rI2\/pA/E/I =t . (1)

In order to avoid any confusion between the lat-
eral deflection us3 and the dimensionless control
variable u introduced below we also introduce w
as the normalized deflection. With
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this normalization yields the dimensionless model

Mw  Pw
EER = @

with the boundary conditions
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The initial conditions can be supposed to be zero.
This last condition involves the new dimensionless
control variable v defined as

u(r) = %V(T) )



These equations can easily be transformed into
operational ones using either Laplace transforms
or Mikusiniski’s operational calculus [10]. (see also
Remark 3.1). Both leads to the same result: By
introducing s as an operator corresponding to the
differentiation with respect to 7, and distinguish-
ing the transforms of w and u by hats, we obtain
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The solution of this system satisfies (i = v/—1)
w = Acosh (\/z_sz) + Bsinh (\/Z_SZ) +
C'cos (\/2752) + Dsin (\/2752)

with the parameters A, B,C, and D determined
by the following linear system of equations, which
results by evaluating the boundary conditions:

A+C =0, B+D=0
Aiscosh/is + Bissinh vis—
C'is cos \/27 — Dissin \/E = -1
Asinhv/is + B cosh v/is+
C'sinvis — Dcosvis =0
Equivalently, by eliminating A and B, we get
18 (cosh \/E + cos \/E) C+
18 (sinh \/Z_S + sin \/z_s) D =
(sinh \/E —sin \/E) C+
(cosh\/i_s + cos \/z_s) D =0

The equations (3) are satisfied if we introduce the
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flat or basic output g via

o= 7 (cosh\/i_s—l—cos\/i_s)g

s
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(see also Remark 3.1). Now equation (3) yields a
formula for 4 in terms of y:

@= —[2+cosh(Vis(l+1i))+

cosh (\/E (1-19)]9. @)

Moreover, we get a formula for the operational
function w representing the deflection:

o (5 (1 — ) + cosh (Vi1 2) +
% (cosh (\/Z_S 1+ ZZ)) — cosh (\/_ (i — z))) 4
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i
1% cosh (\/7 (i+2))] ;y .

(5)

We thus have a first set of formulae expressing

the system variables w and 4 in terms of the flat

output §. Expanding the formula (5) in a power
series in z yields:

=
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Analogously, a formula for @ is obtained either by
derivation w.r.t. z and evaluation at z = 1 or
directly by expanding equation (4)
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The trajectories in the (dimensionless) time do-
main are now obtained by interpreting the opera-
tor s as differentiation w.r.t. 7. The dimension-
less deflection of the beam results as

w =

> (4k1+2)! (0" 20 -2"2 4 N
k=0 8

§R{<Z+Z)4k+2}+g{<l+z)4k+2}+
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and the explicit formula of the control is

1+Z 4k ] (2k) (9)

We thus have a formal parametrization of all sys-

tem variables in terms of the trajectory of the flat
output.



Remark 3.1 In [3] and [5] a mathematical frame-
work for linear boundary controlled distributed
parameter systems is proposed which extends
Fliess’ module theoretic approach to linear sys-
tems beyond the class of time delay systems. In
this algebraic approach a system is intrinsically
described by a module over an appropriate ring of
operational functions in the sense of Mikusinski.
From a computational point of view, which is the
one of the present paper, these operational func-
tions behave very much like Laplace transforms.
The advantage lies in the ability to perform formal
algebraic operations and to postpone questions of
convergence to the choice of desired trajectorics.
The flat output is defined as a basis of a free mod-
ule in this context. U

In order to actually get a parametrization of
the solution, the trajectory of y must be chosen in
such a way that the series (8) converges (and with
this also series (7)). In order to meet the zero ini-
tial conditions, we need a solution which starts at
rest, namely at w(z,0) = 0 and reaches another
equilibrium after a finite time 1. This is equiva-
lent to y*)(0) = 0,k > 0 and y*)(T) = 0,k > 0
and thus a non-analytic function is required. A
possible choice for y is:

0 ift <0
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with o > 0.

Remark 3.2 (See [3] for additional references.)
A function f of the real variable t is said to be
Gevrey of class vy € R on [0,7T] if for all & > 0
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where C'p is a real constant depending on 7" and
f. The analytic functions are thus Gevrey of class
1 and the function y in (10) is Gevrey of class
v = (1 + 0)/o. This implies that for ¢ < 2 the
series (8) converges. O
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4 Experimental setup

The experimental setup, as shown in Fig. 3 con-
sists of the piezoelectric cantilever beam, a laser
measurement unit for measuring the tip deflec-
tion, a digital signal processor (DSP) unit with ad-
ditional A/D- and D/A-converters, the real time
workshop of MATLAB/SIMULINK, and a volt-
age amplifier. The piezoelectric bender is suitable
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MATLAB
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Figure 3: The experimental setup.

for low power electromechanical applications. The
characteristics of the material and the geometric
dimensions are as follows:

piezoelectric stress dz; = —220 10 '2 [m/V]
Young’s modulus £ = 0.5510'! [m?/N]
mass density p = 7.9 103 [kg/mﬂ

length x width x height 35 x 12.5 x 0.7 [mm]
number of layers/laminate n =7

maximal tip deflection us (1) = 300 [pum]
breaking tip force '~ 1[N] .

(11)

The tip deflection is measured with a laser head
offering a measurement accuracy of 3 [um]| sam-
pled every 80 [us]. It should be noted, that the
laser measurement unit produces significant noise
depending on the sample rate.

5 Experimental Results, Open
Loop Control
The open loop design requires a choice of the nor-
malized time 7" and the parameter o (see func-
tion (10)). Because of the time scaling with equa-
tion (1), the time T corresponds to the rise time
t, = 2.3-1073T. Further the infinite series (7)
and (8) must be truncated after a appropriate

number N. In this work we have included the



results of experiments which were obtained with
t, = 11.5[ms|,0c = 1.1, N = 5. Fig. 4 shows a
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Figure 4: Step response of the piezoelectric ben-
der.

step response (applied voltage V' = 3[V]) of the
piezoelectric bender. The first three of the infi-
nite number of eigenfrequencies wy; can be deter-
mined from the modeling with w1 = 1530 [rad/s],
wpo = 9590 [rad/s|, and wp3 = 26850 [rad/s|.
They are verified with identification methods, too.

Remark 5.1 For the modeling and the open loop
control law design, the damping was not taken into
account. This leads to a significant simplification
in the design but has no essential influence on the
results.

Fig. 5 shows the results of the experiment with
rise time ¢, = 11.5 [ms] which shows a good
correspondence between calculated and measured
trajectories. There exist some physical effects
not taken into account for the modeling which
have essential influence on the experimental re-
sults. In our experience two effects play a manda-
tory rule: a) The hysteretic effect leads to steady
state errors, and b) We have designed the open
loop control law from a continuous time system
point of view. But the experiment (sample time
To = 80 [us]) requires a discrete time description.
The related theory is not available at the moment.

6 Experimental Results, Closed
Loop Control

The results of the section 5 have shown that mo-
tion planning with the flat output approach leads

tip deflection 104 [m]
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Figure 5: Open loop control, rise time 11.5 [ms].

to fine results. Nevertheless any open loop de-
sign has inherent problems caused by modeling er-
rors and unpredictable disturbances. These effects
lead to steady state errors or oscillations which
cannot be suppressed by an open loop control law.

The application of closed loop control with a con-
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open loop | | desired tip
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voltage piezoelectric ection
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additional deviation of the
voltage feedback tip deflection
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Figure 6: Closed loop control scheme.

trol scheme as shown in Fig. 6 offers a suitable
way to avoid these problems. The signal gener-
ator calculates the open loop voltage V and the
desired tip deflection tyer 3 (7). If the measured tip
deflection us (I) and the calculated tip deflection



Urer,3 (1) differ for any reason, than the feedback
controller will produce an additional voltage to
suppress this deviation. Hence, the feedback part
is designed from specifications like stability, dis-
turbance rejection, and robustness. The controller
design was made with a nonstandard Hs—design
[7]. This method leads to a controller system of
order six including an integral part. Fig. 7 shows
the result of the closed loop experiment.
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Figure 7: Closed loop control, rise time ¢, =
11.5 [ms].

7 Conclusion

We have presented a flat output approach for the
motion planning of the deflection of a piezoelec-
tric bender. The measurement results have shown
that this method is an feasible way for the gener-
ation of trajectories.

This open loop control design method has so far
been applied to two different flexible robot arm
models [3], [1], (the latter reference includes ex-
perimental results), to the heat equation [9], and
to tubular reactor models [4]. Tt is a generalization
of the flatness based control of nonlinear systems

[2], [9].
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