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Abstract: The problem of hidden harmonic components detection in stochastic sequences occurs quite often in
practice and, first of al, in technica diagnostics and monitoring of signals of various natures. In the present
paper an adaptive approach based on use of artificial neural networks is introduced. It provides a real-time
detection and parameters estimation of an arbitrary number of harmonic components in a monitored stochastic
sequence, as well as detection of new harmonics appearance in the signal and disappearance of the present ones
(fault detection).

The solution of the problem is based on a multistage scheme, comprising of determination of the main
harmonic frequency, determination of the amplitude and phase of the main harmonic, exclusion of the main
harmonic from the signal; determination of the second harmonic frequency of the monitored signal (the main
harmonic of the innovation signal), determination of parameters of the second harmonic, exclusion of the
second harmonic from the innovation signal, and so on. When the sequence of residues becomes a white noise
the process ends.

Then by means of an adaptive multimodel approach the "weight" of each harmonic in the monitored signal
is estimated and a polyharmonic deterministic sequence is synthesized that best approximates the source signal.

The introduced approach is implemented by means of a multilayer artificial neural network. Neurons of the
first hidden layer are tuned by means of a learning algorithm that has filtering and smoothing properties
simultaneously. The smoothing parameter adjustment makes it possible to get a spectrum of procedures from
Widrow-Hoff agorithm to Goodwin-Ramadge-Caines algorithm (stochastic approximation). In this layer
parameters of autoregression equations with complex conjugate roots corresponding to different harmonics are
estimated. In the second hidden layer parameters of individual harmonics are calculated. The output layer of the
neural network consists of a single element, being in fact an elementary Adaline. It is however adjusted not by
means of the traditional delta-rule, but on the basis of the proposed learning algorithm that takes into account
congtraints on "weights' of harmonics. These "weights' describe the influence of each harmonic on the
monitored signal and provide unbiasedness of the approximating sequence.

Monitoring of changes of these "weights' provides a real-time detection of parametric and structural faults
of the source signal.

The convergence and optimality of this algorithm are proved. Results of simulation confirm efficiency of
the proposed approach that provides both high speed and high sensitivity to changes of the signal.
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1 Introduction in practice and, first of al, in technical diagnostics
The problen of hidden harmonic components and monitoring of signals of_various natures [1-4].
detection in stochastic sequences occurs quite often In the present paper an adaptive approach based on

use of artificial neural networks is introduced [5]. It



provides a red-time detection and parameters
estimation of an arbitrary number of harmonic
components (possibly of aliquant frequencies) in a
monitored stochastic sequence, as well as detection
of new harmonics appearance in the signa and
disappearance of the present ones (fault detection).

2 Statement of the problem
Assume that the analyzed stochastic sequence can
be presented in aform

m

Y, :Z(aj cosw;k +b; sin a'jk)+£_k, (1)
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where m — rather great number, assigning the
possible number of harmonic components; a;, b —
unknown parameters of separate harmonics; 0 < ¢
= 27T < n—unknown frequencies to be estimated,
To — signa quantification period; k=0, 1, 2, ..., N —
discrete time; & — stochastic component, a white
noise with zero mean and finite variance.
Let us put in correspondence to (1) a model

§,, =4,cosdk+b sindk = o
=2cos alyk—l Yo = ﬁ12yk71 —Yvao
describing a monoharmonic oscillation  with

parameters 4,,b,,@&,. Unknown parameters of the

model (2) can be estimated by means of a simple
two-stage procedure. On the first stage the
estimation criterion is introduced

‘]1l = szg(yk Yo~ Elzyk—lj (3)

and the frequency is estimated by its minimization:
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then, on the second stage, parameters a, and 61 are
estimated by minimization of the criterion
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It is straightforward to see that
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3 Adaptive estimation of harmonic

components parameters

With the objective of early diagnostics of monitored
signal the problem of parameters estimation should
be solved in real time using the exponentialy
weighted stochastic approximation procedure [6]. It
provides a compromise between filtering and
tracking capabilities of the adaptive identification
process. If after N observations the approximations
a,,,b, ., , are obtained, then with the reception
of the (N+1)-th observation a correction according
to arecursive algorithm is produced:
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where 0<o <1 — smoothing parameter,
determining a compromise between filtering and
tracking capabilities of the algorithm.

It is clear to see that first two relations in (7)
describe the process the frequency parameter [,
estimation which under a = 1 becomes a Goodwin-
Ramadge-Caines agorithm [7], and under a=0—a
widespread in adaptive systems theory Kaczmarz
algorithm [8, 9]. The last two redations in (7)

provide approximation of the parameters a, and 61

and under a = 1 coincide with the Kiefer-Wolfowitz
stochastic approximation algorithm [10], and under
a = 0 —with aunit step gradient search algorithm.



Then let us introduce an innovations seguence
Y., by excluding the first harmonic from the source

signd
yl,k =Y - 91,k (8)

and let us put in correspondence to it a
monoharmonic model.

Y, =8,00s®,k +b, sin &,k = ©
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Minimizing the estimation criteria
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with arecurrent procedure
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the second harmonic signal is obtained
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Then introducing an innovation
yz,k = yl,k - yz,w (14
the third harmonic parameters approximations

f,. &,,4,,b, can be obtained, and so on.
And, at last, for the m-th harmonic
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where
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arecurrent procedure can be written
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The obtained parameters approximations

@.,a,b of separate harmonics form the

corresponding vectors ¢,a,b.

4 Adaptive approximation of

multimodel sequence parameters
Let usform amultimodel filtered sequence based on
the obtained m harmonics [11]

yk = chyj,k =CTyk ) (18)
=1

where ¢ = (cy, C» ... Cn)' — weights vector,
describing a “contribution” of each harmonic to the
sequence Yy, yk = (91,k1§/2,k1---1§/m,k) - (mX]-)'
vector, comprising of the obtained harmonics. To
provide unbiasedness of Y, an additional constraint
on weights ¢; is introduced

c. =E'c =1, (19)
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whereE = (1, 1, ... 1)" — (m>1)-vector.

Unknown weights c; can be found with Lagrange
undetermined multipliers method. Introducing
(Nx1) observations vector Yy = (y1, Y2, ... Yn),

(Nxm) model signals matrix Y, = (§,,9,,....9, J .
error signals

Vik =Y — 91,k = Vka

Vok =¥« — yz,k’

~ 20
Vok = Ye = Yopor (20)
Ve =Y _yk =Yy _CTyk =CTEyk _CTyk =
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and Lagrangian

N
L(c,A)= Yc'V.VTc +AlCTE-1 =
(c, 2) k23 AALEY( ) 21)
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where A — Lagrange undetermined multiplier,
N
W, = ZVkaT )
k=3
and then solving the Kuhn-Tucker equations system
[12]
V.LE, 4)=2W,c+ AE =0,
- (22)
cLic,A)0A=c"E -1=0,
the desired result is obtained in aform
c, =W, 'EEW,EJ",
A, =—2E'W,'E, (23)
L(c,. A, )= E'WE)"

and in this connection the following can be proved
[11]
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for any j = 1, 2, ..., m. Introducing a matrix
P, =W,' and using the lemma of matrix inversion,
areal-time estimation of weights c; can be organized
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5 Architecture of artificial neural
network for harmonic components

detection

With large m (m should always be less than 0.5N)
numerical implementation of this approach meets
significant difficulties. To overcome them the power
of parallel calculations of neural technologies is
used.

Figure 1 shows the scheme of a neural spectrum
analyzer. It is a three-layer structure implementing
the introduced approach.

The first layer consists of elementary neurons of
the same type. Each of them contains two back shift
elements z*, two adders ¥, and one tuned element

ﬁj. The first neuron of the first layer AN/ is fed

with the signal yn+1, and on the back shift elements
signalsyy and yy. are formed. This neuron forms the
model of the first harmonic (2). The synaptic weight
B, is tuned by the first two relations of the

procedure (7). Outputs of the neuron AN’ are
Sgnals yl,N+17 ﬁl,N+17 and 91,N+1' The Sgnal yl,N%l

is fed to the input of the second neuron AN/ . It acts
the same way and forms on its outputs signas

Yonas Bonas Yones - And, at last, the last neuron of
the first layer AN’ forms signals ¥, ... Foras
Yansa - Thusin the first layer of the neural spectrum

analyzer Sgnals yl,N+1 ’ ﬁl,N+1 ! yl,N 417 yZ,N 411 ﬁZ,N+1 !

yz,N 4t ym,Nﬂ’ ﬁm,Nﬂ’ 9m,N+1 are calculated in a
paralel manner.

These signals are fed to the hidden layer that
consists of m similar neurons ANY . Each neuron
contains three nonlinear activation functions:
v, =arccos f; Yy, =cosak, W, =sinak; two
adders and two synaptic weights that are tuned by
the last two relations of (17). Each AN7 first using

v, calculates @, , =arccosf; ,,, and then using

y; and v — cosa; ., (N +1) and sina;, ,(N +1)

(these elements also receive a signal from an
iteration counter — on the scheme 4). Then with the

learning procedure weights &;,.,, b;,, are

calculated that describe each of the harmonics being
Separated.

The output layer of the neural network consists
of a single element AN,, which is in fact an

elementary McCulloch-Pitts neuron. It is however
tuned not by traditional procedures of Widrow-Hoff
algorithm type, but using the algorithm (25) that
takes into consideration constraints on the weights
(19). These weights define “contribution” of each
harmonic ¥, into the analyzed processyi, and their

changes alow a real-time detection of parametrical
and structural faults of the input signal.

6 Conclusion

Thus, using algorithms (17), (25), it is possible to
analyze in real time a spectra composition of the
monitored signal, determine parameters of
harmonics that form it, a contribution of each
harmonic into the signal, and also detect emerging
faults by monitoring changes of components of
weights vector c. Implementation of the proposed



approach using artificial neural networks provides
high performance and ease of schematic design of

the spectrum analyzer.
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Figure 1 — Neura spectrum analyzer
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