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Abstract: - This paper concerns the modeling of discrete timed Petri nets (tPNs) by means of fuzzy logic. A fuzzy
multimodeling constituted by two fuzzy linear models, is worked out for each transition of the tPN. The accuracy of the
model depends on the definition of the membership functions. As a result, we show that classical sets which are a
particular case of fuzzy sets permit to obtain the exact modeling of tPN.
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1   Introduction
Many authors have discussed and illustrated the
application of Petri net (PN) models [1] to the analysis
of discrete event systems (DESs) [3]. Indeed, they offer
a good compromise between the graphic representation
and the analytic description through mathematical
equations that describe the evolution of systems. In order
to evaluate dynamic performance of DESs, timed Petri
nets have been introduced [1]. However, they are
difficult to analyse and synthesize. In this context, the
fuzzy logic theory seems to be a good alternative of the
study of tPNs because it permits an intuitive modeling of
systems based on expert appraisal (human expertise).

While the number of applications using fuzzy logic
increased, few researches have been developed for
manufacturing systems and PNs. In particular, certain
results have been established for fuzzy modeling of
manufacturing systems by Mahmood [7] and fuzzy
control design was proposed by Ghabri [4] [6] and
Genest [3]. In these works, the resulting fuzzy systems
based on Mamdani model [8] are nonlinear. So, they are
in certain cases computational combersome to analyse.
Conversely, the Sugeno model [9], based on a set of
linear equations, can form simply a global
approximation of a system. In this method, sets of fuzzy
rules are used to imply suitable local linear state space
models.

Based upon this method, the main concern of this
paper is to propose an approximation of tPNs by fuzzy
logic. Then, we show that when the fuzzy sets tend to
classical sets, we obtain exactly a T-timed Petri net
(TtPN).

The paper is organized as follows. First, we briefly
describe TtPNs. Thereafter, we describe a general
methodology to construct the fuzzy model applied to
tPNs. Then, by means of an elementary TtPN with three
places and one transition, we study the fuzzy multimodel
and point out that when its fuzzy sets tend to classical
sets we have the exact modeling of discrete T-timed
Petri nets.

2   T-timed Petri nets
A timed Petri net [1] is generally defined as a Petri net
such that constant times (delays) are associated either to
places, the tPN is said to be P-timed Petri net, or to
transitions, the tPN is called T-timed Petri net. It has
been shown that these two models are equivalent. We
can easily shift from one model to the other. In what
follows, we briefly describe the T-timed Petri nets.

Let T be the set of the m transitions and P the set of
the n places of a tPN. Let M be the marking vector given
by M = [m1,...,mn]

T where mi which is an integer denotes
the marking of the place Pi.

The T-timed Petri nets (TtPNs) represent the fact that
the transitions Tj∈ T, j∈{1,…,m}, is enabled during a
delay dj∈ [0,+∞). We shall consider the case where dj is
a constant value, but in general case dj could be variable.
Then, a token can have two states: it can be reserved
during the firing of a transition or it can be unreserved.
Only non reserved tokens are considered for enabling
conditions. The decisions are not considered in this
paper, i.e. the conflicts or the concurrency that may
occur when a transition have several output places.



An example of TtPN constituted of two places and
two transitions is given, Fig.1.a, and its evolution is
showed, Fig.1.b.
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Fig.1: Example of T-timed Petri net

The fundamental equation [1] which describes the
evolution of the discrete Petri nets is given by:

Mk = Mi +W.S, (1)
with S the firing sequence vector [1], W the incident
matrix, Mi an initial marking which permits with S to
obtain the marking Mk.

In the next section, we present all the parameters of
the fuzzy multimodeling for T-timed Petri nets.

3   Fuzzy approximation of TtPNs
Let the TtPN, Fig.2, composed by two upstream places
P1 and P2,  one downstream place P3 and one transition
T1. The fuzzy system is given next.
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Fig.2: TtPN

We need two variables to describe the evolution of
TtPN: the marking of the places which must be larger
than one to fire the transitions, and the firing time which
enable the firing of the transitions. We define the firing
time  as tj=0 when the firing begins and tj=dj when the
firing ends.

We describe the TtPN by a fuzzy Sugeno system [9]
for which each transition has two type of inputs, the
marking and the firing function, and one output the
instantaneous firing vector S (1).

A fuzzy system is composed of four parts:
- Fuzzification procedure which transforms input

vectors into fuzzy sets. The most commonly used is the
singleton fuzzification. Then, we define two fuzzy sets
for the marking mi of the place Pi, Pi∈ P and i∈ {1,...,n},
which are ″≥1″ and ″<1″ and two fuzzy sets for the time
tj wich are ″≥dj″ and ″<dj″, Fig.3. Their membership
functions are given by:

    1 for mi = 0,
µ<1(mi) =   1-mi for mi ∈ [0;1],

    0 for mi ∈ ]1;+∞[.

    0 for mi = 0,
µ≥1(mi) =   mi for mi ∈ [0;1],

    1 for mi ∈ ]1;+∞[.

    1 for q(Tj) ∈ [0;τ],
µ<dj(tj) =   tj/(τ-dj)- dj//(τ-dj) for tj  ∈ [τ;dj],

    0 for tj  ∈ ]dj;+∞[.

    0 for tj ∈ [0;τ],
µ≥dj(tj) =   tj/(dj-τ)-τ/(dj-τ) for tj ∈ [τ;dj],

    1 for tj∈ ]dj;+∞[.
with τ∈[0;dj].
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Fig.3: Fuzzy sets for the inputs

- Rulebase wich is a linguistic description of the studied
system. The fuzzy rules for the transition Tj are given by:

Rk    : If m1 is ″<1″ or ... or tj is ″<dj ″ then Sk=0,
Rk+1: If m1 is ″≥1″ or ... or tj ″≥ dj ″ is then Sk+1=C,

where mi, i {1,..,n}, is the marking of the upstream place
Pi, S

k is the instantaneous firing vector for the rule Rk, C
is a vector where the unique component non equal to
zero corresponds to the firing of the transition Tj.

- Inference engine which permits to interpret linguistic
rules into mathematical relations. These relations are
defined by the intersection between fuzzy sets which is
represented by a T-norm [2], the union by a S-norm [2].
The minimum operator is chosen as the T-norm and the
operator maximum is taken as the S-norm. Indeed, these
operators have as a result only one input at each time and
not a linear or nonlinear combination of the inputs.

- Defuuzification [2] which transforms the fuzzy
outputs into output vectors. Since the conclusions of
each rule of a Sugeno system are very simple, a complex
defuzzification is not necessary and the output can easily
be calculated as a weighted sum. Then, the result of the
defuzzification is given by:

         min(µ≥1(m1,...,tj)).C+max(µ<1(m1,..., tj).0
Sres=
              min(µ≥1(m1,..., tj)+max(µ<1(m1,..., tj)



with min(µ≥1(m1,..., tj)+max(µ<1(m1,..., tj)=1 which is
explained by the definition of the fuzzy sets.
Then, we obtain 5 cases:

1. If m1=0 or... mn=0 or tj ∈[0;τ], then:

Sres= min(0,...,0,0).C+max(1,...,1,1).0=0.

2. If m1∈[1;+∞[ or... mn∈[1;+∞[ or tj ∈[dj; +∞[, then:

Sres= min(1,...,1,0).C+max(0,...,0,1).0=0.

This case corresponds to the fact that the transition Tj

is fired. This result is the same as for a T-timed Petri
net.

3. If m1∈[0;1] or... mn∈[0;1] or tj ∈[τ;dj], then:

Sres= min(m1,..., mn ,tj/(dj-τ)-τ/(dj-τ)).C
       + max(1-m1,..., 1-mn ,tj/(τ-dj)- dj//(τ-dj)).0.

The transition Tj could not be fired because mi are
inferior to one. This case is impossible.

4. If m1∈[0;1], or...or tj ∈[dj; +∞[, then:

Sres= min(m1,...,1).C+ max(1-m1,..., 0).0=miC.

This case is impossible because the transition T1 is
not enabled if the marking m1 is inferior to 1.

5. If m1∈[1;+∞[, or...or tj ∈[τ;dj], then:

Sres=   min(1,..., tj/(dj-τ)-τ/(dj-τ)).C
       + max(0,..., tj/(τ-dj)- dj//(τ-dj)).0

     = tj/(dj-τ)-τ/(dj-τ)).C.

This case leads to the fact that the transition T1 is
enabled but not fired.

In the following, we study two particular cases which
are τ = 0 and τ = d1 in order to show that the exact model
of T-timed Petri net is obtained when the fuzzy sets tend
to classical sets.

3.1 Case ττ = 0
Then, we obtain the fuzzy sets of the time tj given in
figure 4.
We have the defuzzify value Sres given by (2) and we
obtain if m1∈[1;+∞[ and … and tj ∈[0;dj]:

Sres= min(1,...,tj/dj).C+ max(0,...,1-tj/dj).0= tj/djC.
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Fig.4: Fuzzy sets for tj with τ = 0

The other cases are the same as given above.
We can conclude that this fuzzy multimodel could not
give exactly a T-timed Petri net (figure 6). Indeed, the
marking is a linear function of the time and looks like a
continuous approximation of discrete T-timed Petri nets.

3.2 Case ττ = d1

In this case, the fuzzy sets "≥dj" and "<dj" tend to
classical sets [6], figure 5, on which we can simply apply
binary logic.
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Fig.5: Fuzzy sets for tj with τ = dj

We have also the same cases as before unless when
m1∈[1;+∞[ and … and tj ∈[0;dj]. Indeed, we obtain:

- if tj < dj then:
Sres= min(1,...,0).C+ max(0,...,1-tj/dj).0=0.

- if t1 ≥ d1 then:
Sres= min(1,...,1).C+ max(0,...,0).0=C.

As we can see our fuzzy sets equal to classical sets
approximate exactly a TtPN model, figure 6.
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Fig.6: Results of the fuzzy approximation for TtPN

All these results can be easily generalized to a TtPN with
m transitions and n places where the transitions have
several input places and only one output places (TtPN
without conflict or concurrency). The fuzzy
approximation can also be applied to P-timed Petri nets
with a different definition of the time. Indeed, the time in
this cases is denoted by ti and corresponds to the delay di

associated with the places of the P-timed Petri net.

4   Conclusions
In this paper, we have realized a fuzzy multimodeling of
T-timed Petri nets. We have shown that when the fuzzy
sets tend to classical sets we obtain exactly a T-timed



Petri net. In this case, we reduce the computation times
and the space memory by means of binary logic. It is
interesting to note that the fuzzy multimodel has linear
local models which permit a simpler controller design.
Finally, we would like to point out that the results
presented here may be generalized to all timed Petri nets
due to the equivalency of T-timed Petri nets and P-timed
Petri nets. The only difference is the definition of the
time tj which for a P-timed Petri net is associated with
the places.

References:
[1] R. David, H. Alla, "Du Grafcet aux réseaux de

Petri", 2nd edition Hermes, Paris, 1992
[2] D. Dubois, H. Prade, "Fuzzy sets and systems: theory

and applications", Academic Presse, 1980
[3] L. Genest, "Outils d'aide à la décision pour le

pilotage d'atelier", PhD., 1995
[4] M.-K. Ghabri, P. Ladet, "Application of fuzzy

control to a water bottling line", proceedings IEEE
on syst., man and cyber., 1994, pp. 812-817

[5] M.-K. Ghabri, "Sur la modélisation et la commande
des systèmes flexibles de production", PhD., 1995

[6] A. N. Kolmogorov, S. V. Fomin, "Introductory real
analysis", Richard Silverman editor, 1970

[7] W. Mahmood, G. Vaxhtsevanos, "Fuzzy linguistic
modeling and control of manufacturing systems",
proceedings INRIA/IEEE., 1995

[8] E. H. Mamdani, S. Assilian, "An experiment with in
linguistic synthesis with a fuzzy logic controller",
international journal of man and machine studies,
Vol.7, 1975, pp. 1-13

[9] T. Takagi, M. Sugeno, "Fuzzy identification of
systems and its application to modeling and control",
IEEE transactions on syst., man and cyber.,
Vol.SMC-15, No.1, 1985, pp. ?-?


