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Abstract: - Modern wireless telecommunication devices (GSM Mobile system) can interfere with implantable

medical devices/prostheses and cause possible malfunction. Also the performance of an antenna is signi�cantly

altered by the presence of conducting medical devices/prostheses. The principle objective of this paper is to

outline a general expression of dyadic Green's function (DGF) for the problem of electromagnetic radiation from

a source of excitation in the presence of a �nite length of perfectly conducting circular cylinder of any size as well

as of resonant length, which is valid everywhere, including the source region. The whole structure is assumed

to be uniform along the propagation direction. The DGFs are obtained by employing the method of scattering

superposition.

Key-Words: - Electromagnetic, Circular Cylinder, Implants, Antenna, Dipole, Dyadic Green's function.

1 Introduction

Although electromagnetic scattering by a �nite cylin-

der is a well known cannonical problem, published

work does not include the e�ects of arbitrary placed

source point. The derivations presented here are mo-

tivated by the need to understand the behaviour of

antennas near to or embedded in living tissue. The

Eigen-function expansion (EFE) of DGFs in electro-

magnetic theory provide a systematic means of con-

structing and interpreting these dyadics. The pio-

neering work by Tai [1] has set the stage for most

of what has been achieved over the last two and a

half decades. The expansion of DGFs in terms of the

Hansen [2] vector wave functions must be carried out

carefully in order to ensure that one is dealing with a

complete expansion.

This paper is organized as follows. The complete

set of cylindrical vector wave functions are introduced

in section 2. This material is included here in order

to explicitly de�ne notation and to call attention to a

few points in connection with these expansions.

In section 3 we begin to formulate the problem for

a �nite circular cylinder and in subsection 3.1, we set

out with the case, in which we construct the DGF,

Ge1(R;R
0

), in terms that constitute the continuous

Eigen-function expansion (EFE) in which the Eigen-

functions are guided in preferred r and z-coordinate

directions, using the procedures described in Tai [3]

or Collin [4]. This expansion also contains an ex-

plicit dyadic delta function term which is required for

completeness at the source point. It is considered as

a correction to the general solenoidal EFE which is

valid outside the source point.
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Fig. 1. Diagram of a Finite Circular Cylinder

The procedure required to derive the complete

EFE of the scattering DGF for the �nite circu-

lar cylinder, in terms of only the solenoidal Eigen-

functions is shown to be a simple and straight-forward

general expression and is summarized in section 4.

The DGF for a �nite conducting cylinder, GE1(R;R
0

)

can be constructed from the principle of the superpo-



sition, where it satis�es the boundary conditions.

Magnetic type DGF discussed in section 5, can

be found by invoking duality or once the electric �eld

is obtained the magnetic �eld is derivable by taking

the curl of the electric �eld, and vice versa.

Conclusions are then presented in section 7 sum-

marizing the important points contained in this work

and �nally a short bibliography is provided for further

research.

2 Vector Wave Functions for a
Circular Cylinder of Finite
Length

The cylindrical vector wave functions are the building

blocks of the EFE of various kinds of DGF. They are

denoted by Lee

oo
n�, Pee

oo
n� and Qee

oo
n�, that are solutions

of the homogeneous vector Helmholtz equation. The

generating or Eigen-functions, which are solutions of

the cylindrical scalar wave equation r2	 + k2�	=0,

with the di�erential equation in the cylindrical coor-

dinate system
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with K, the separation constant and k� being an

undetermined wave number. Implementation of the

method of separation of variables in this system �-

nally results the generating function [5] in the form

	ee

oo
n(h) = jn(�r)

cos

sin
n�cos

sin
hz; (2)

Here subscripts \e" stands for even and \o" is odd

character of the generating functions. h = q�
l

are

the eigenvalues in the z-direction with q = 0; 1; 2; ::::

and l is the length of cylinder. jn(�r) identi�es the

cylindrical Bessel functions of the order n to represent

both out-going and in-coming waves. � is the contin-

uous eigen-value. Cylindrical vector wave functions

are akin to the Debye potentials.

Lee

oo
n�(h) = r	ee

oo
n; (3)

Pee
oo
n�(h) = r�[	ee

oo
nẑ]; (4)

Qee

oo
n�(h) =

1

k�
r�r�[	ee

oo
nẑ]: (5)

Where ẑ is the piloting vector.

The complete expressions for the solenoidal (ro-

tational or transverse) functions are

Pee
oo
n�(h) =

8><
>:
�

n
r
jn(�r)

sin

cos
n�cos

sin
hzr̂

�(
@jn(�r)

@r
)cos
sin
n�cos

sin
hz�̂

0

9>=
>; (6)

Qee

oo
n�(h) =

8><
>:
�h[

@jn(�r)

@r
]cos
sin
n�sin

cos
hzr̂

hn
r
[jn(�r)]

sin

cos
n�sin

cos
hz�̂

�2[jn(�r)]
cos

sin
n�cos

sin
hzẑ

9>=
>;

1

k�
(7)

And the complete expressions for the non-solenoidal

(irrotational or lamellar) functions are

Lee

oo
n�(h) =

8<
:

@
@r
[jn(�r)]

cos

sin
n�cos

sin
hzr̂

�
n
r
[jn(�r)]

sin

cos
n�cos

sin
hz�̂

�h[jn(�r)]
cos

sin
n�sin

cos
hzẑ

9=
; (8)

where k2� = �2+h2 and in these vector wave functions

one should be careful with the sign of the elements in

the matrices when cross-multiplying the terms from

\e" to \o" and vice-versa e.g. \sin sin" always remains

negative while \cos cos" positive. Also \� cos sin" and

\� sin cos" in second elements of matrices in P
eo
and

P
oe

respectively. In L
eo

and L
oe

both \cos sin" and

\sin cos" are positive in the �rst element of their re-

spective matrix. For Q
eo
, \� sin cos" in second ele-

ment of matrix, while \+ cos sin" in the third element.

For Q
oe
, \� cos sin" and \+ sin cos" in the elements 2

and 3 respectively. \�" applies the negative to the

top line while positive to the bottom line.

Note that in the set of cylindrical vector wave

functions only Pee
oo
n� do not possess the z component.

The r̂, �̂ and ẑ are the cylindrical unit vectors. These

functions are de�ned in the entire space, correspond-

ing to 0 � r �1, 0 � � � 2� and 0 < z < l.

The volume integral of the product of the cylin-

drical vector wave functions is clearly zero if n 6= n0

and h 6= h0 because of the orthogonal property of the

cosn� and sinn� functions and the Fourier integral

relation. The derivation of the orthogonal proper-

ties of these vector wave functions are very similar to

those for in�nite circular cylinder discussed by Tai [3]

and Collin [4].

3 Formulation of the Problem

Consider a cylinder (�g. 1) of radius \�" concen-

tric along z-axis with length \l" is illuminated by an

electromagnetic wave. An electromagnetic �eld is in-

duced in the system and an electromagnetic wave is

scattered by the system.

A time dependence ej!t is assumed and sup-

pressed throughout.



3.1 DGF for a �nite Length Cylinder of

Circular Cross-Section

Because the dyadic r�[IÆe(R � R
0

)] is solenoidal, it

can be expanded in terms of solenoidal vector wave

functions; Pee
oo
n� and Qee

oo
n� de�ned previously.

Applying the method of (Gm) and according to

the Ohm-Rayleigh procedure, an EFE for the source

function r�[IÆe(R�R
0

)] using the solenoidal vector

wave functions can be

r�[IÆe(R�R
0

)] =

1w

0

d�

lw

0

dh

1X
n=0

�

�
Qeo

o
n�(h)Aeo

o
n�(h)

P ee

o
n�(h)Bee

o
n�(h)

�
;

(9)

where � and h are continuous eigen-values and

Aeo

o
n�(h) and Bee

o
n�(h) are two unknown vector func-

tions to be determined. This is a three-dimensional

problem with a dyadic singular function, therefore the

above equation can be treated as the Fourier trans-

form and the Fourier-Bessel transform or the Hankel

transform of r�[IÆe(R�R
0

)]. By taking the anterior

scalar product of the above equation with Qeo

o n0�0(h0)

and integrating the resultant equation through the

entire space and as a result of the orthogonal rela-

tionships and repeating the same routine with the

P ee

o n0�0(h0) we can obtain the EFE, where we have

preserved the Fourier integration. The plane of dis-

continuity for the magnetic DGF is located at r = r0.

The expression for (Ge1) for a �nite cylinder of radius

\�" concentric with the z-axis can now be written in

the form

Ge1(R;R
0

) = �
r̂r̂

k2
Æe(R�R

0

) +

lw

0

dh

1X
n=0

C�

�

8>>>>>>><
>>>>>>>:

(
[P

(1)
eo

o �
o

(h; �
o
)P 0eo

o
�
o

(h; �
o
)]

[Q
(1)
ee

o �
o

(h; �
o
)Q0ee

o �
o

(h; �
o
)]

)
;

r > r0;

(
[P eo

o �
o

(h; �
o
)P 0

(1)
eo

o �
o

(h; �
o
)]

[Qee

o �
o

(h; �
o
)Q0

(1)
ee

o �
o

(h; �
o
)]

)
;

r < r0:

(10)

where

C� =
i(2� Æno )

2l�2
o

(11)

CoeÆcient C� depends on the value of Æ
n
o which is the

Kronecker delta functions de�ned with respect to n,

when

Æno =

(
1; if n = o

0; if n 6= o
(12)

Here r̂r̂ is a dyad (dyadic product of the unit vectors)

and Æ(R�R
0

) is weighted Dirac delta function in three

dimensions. This is included explicitly as a correction

to the general solenoidal EFE which is valid outside

the source point. The dyadic delta function term at

the source point in cylindrical coordinates

Æ(R �R
0

) =
1

r0
Æ(r � r0)Æ(� � �

0

)Æ(z � z0) (13)

Comparing the DGFs for a �nite cylinder devel-

oped here with those presented by other authors e.g.

Tai [3] for an in�nite cylinder, one can notice that

they are similar in mathematical form but di�erent

in the calculations of Ps and Qs and the limits of in-

tegration for a �nite cylinder.

4 Scattering DGF for a Finite
Conducting Cylinder of Circular
Cross-Section

When a perfectly conducting cylinder of the same size

as above is illuminated by an electromagnetic wave,

the scattered terms can be written in the form

Ges(R;R
0

) =

lw

0

dh

1X
n=0

C�

�

2
4�eo

o �P
(1)
eo

o �(h; �)P
0(1)
eo

o �
(h; �)

�ee
o �Q

(1)
ee

o �(h; �)Q
0(1)
ee

o �
(h; �)

3
5 :

(14)

Applying the principle of scattering superposi-

tion, we obtain

GE1(R;R
0

) = Ge1(R;R
0

) +Ges(R;R
0

) (15)

Where we consider the function for a �nite circular

cylinder in a region 0 � r � 1. After applying the

boundary condition one can determine the unknown

coeÆcients. In order to satisfy the boundary condi-

tion at interface r = �,

r̂�
h
P eo

o �(h; �)P
0(1)
eo

o �
(h; �) + �eo

o �P
(1)
eo

o �(h; �)P
0(1)
eo

o �
(h; �)

i
r=�

(16)

r̂�
h
Qee

o �(h; �)Q
0(1)
ee

o �
(h; �) + �ee

o �Q
(1)
ee

o �(h; �)Q
0(1)
ee

o �
(h; �)

i
r=�

(17)

r̂�
h
P eo

o �(h; �) + �eo

o �P
(1)
eo

o �(h; �)
i
r=�

= 0 (18)

r̂�
h
Qee

o
�(h; �) + �ee

o �Q
(1)
ee

o �(h; �)
i
r=�

= 0 (19)

substituting for P eo

o �(h; �) and P
(1)
eo

o �(h; �)

P eo

o �(h; �) = r�[jn(�r)
cos

sin
n� sinhzẑ]; (20)

P
(1)
eo

o �(h; �) = r�[H
(1)

n (�r)cos
sin
n� sinhzẑ]; (21)



in equation (18) produces �eo

o
� = �

[@jn(��)]=@(��)

[@H
(1)
n

(��)]=@(��)
.

Similarly inserting for Qee

o
�(h; �) and Q

(1)
ee

o
�(h; �)

Qee

o
�(h; �) =

1

k
r�r�[jn(�r)

cos

sin
n� coshzẑ]; (22)

Q
(1)
ee

o
�(h; �) =

1

k
r�r�[H(1)

n (�r)cos
sin
n� coshzẑ]; (23)

in equation (19) produces �ee
o
� = �

[jn(��)]

[H
(1)
n

(��)]
.

5 Magnetic DGF in the
Antenna-Prosthesis
Con�guration

The principle of duality states that once the elec-

tric DGF is obtained, the magnetic DGF is derivable

by interchanging the �eld functions Pee
oo

! kQee

oo

and

Qee

oo

! kPee
oo

and omitting the singularity term contri-

bution and vice versa.

On the other hand the corresponding total mag-

netic DGF at any point in the system can be calcu-

lated from r�Ge = Gm, bearing in mind the dis-

continuous nature of magnetic DGF across a point

source at R = R0 and the Ampere-Maxwell equa-

tion relating Ge and Gm in the dyadic form i.e.:

r�Gm = IÆe(R�R
0

) + k2Ge.

6 Electric and Magnetic Field at
any Point in the Con�guration

The use of DGF technique allows us to determine

the expansion of the electric and magnetic �elds in

a cylinder/antenna con�guration in a direct and ele-

gant manner.

For any current source with current density func-

tion J(R
0

) located outside the cylinder, the electric

or magnetic �eld radiated by such a dipole can be

calculated using the formulae,

E(R) = i!�o

y

V

GE1(R;R
0

) � J(R
0

)dV 0 (24)

H(R) = i!"o

y

V

GM1(R;R
0

) � J(R
0

)dV 0: (25)

These signify the computation of the E and H-

�elds in the structure, which states the superposition

of the incident �eld Ei(R) or Hi(R) and the scattered

�eld Es(R) or Hs(R) is given by

E(R) = Ei(R) +Es(R) (26)

H(R) = H i(R) +Hs(R): (27)

7 Concluding Remarks

General expressions have been derived in simple form

for the �nite conducting circular cylinder (medical de-

vices/prostheses) of any size as well as of very small

radius (resonant length). The DGFs are obtained by

employing the EFE and the method of scattering su-

perposition.

The results of this paper could be useful for a

further analysis of the problem as a thin wire or an

implant such as heart pace-maker embedded in the

body and biotelemetry transmitters for medical appli-

cations and could easily be expanded so as to handle

any scatterer having �nite radius and length.

They can also be applied to problems of optical

�bers and waveguides for the investigation of inhomo-

geneities or obstacles inside them or by considering

the cylinder as an excitation or scatterer. They can

also be of use in the study and design of antennas of

high frequency.

The usefulness of the present technique obviously

requires comparison with numerical and experimental

results. it is envisaged that a later publication will

address this aspect of the problem in more detail.
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