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Abstract- This paper discussesthe etimation of the parameters of a single input, single autput (SISO) process,
modelled infirst orderlag plus delay (FOLPD) form, using gradientmethodsin the gen looptime domain. The
paper considers the convegerce of the process parameters to the model parameters. The convegerce of the
model dedy is discusedfirst, whenthe nondelay modeland process parameters are idertical. The convegerce
of all of themodelparameters is thenconsidered, whenall of the process parameters are unknown.

Keywords- Estimation, time deby, time danain, gradientmethods. CSCC'99 Proceedings, Pages:1301-1308

1 Intr oduction

Gradient methods of parameter estimation
are based on updating the parameter vector (which
includes the dedy) by a vector that depends on
information about the cost function to be
minimised. The gradient algorithms normally
involve expanding the cost function as a second
order Taylor's expansion around the estimated
parameter vector. Typical gradient algorithms are
the Newton-Raphson, the GaussNewton and the
stegoest descent agorithms, which differ in their
updating vectors. The choice of gadient algorithm
for an application dgpends onthe daired speed of
tracking and the computational resources available.
It isimportant that the error surface in the direction
of the dedy (and indeedthe other parameters)
should be unimodal if a gadient algorithm is to be
used succesdully. However, the error surface is
often multimodal. In these circumstances, strategies
for locating global minima may involve multiple
optimisation runs, each initiated at a diferent
stating point, with the stating points slected by
sampling from a uniform distribution [1]. The
global minimum is thenthe local minimum with the
lowest cost function value among al the lacal
minimaidentified.

The use of gadient algorithms to estimate
the parameters of a delyed process has been
discus=d in full esewhere [2]. This paper will
consider further the strategy proposed by Durbin
[3], in which the process isassumed to be moddled
by afirst order lag plus dday (FOLPD) modd. The
process delay variation from the mood dday is

approximated by a rational polynomial, and a
GaussNewton gadientdescentalgorithm is usedto
estimate the delbyed model parameters. A previous
paper [4] has shown that the first order Taylor's
series polynomial is the most appropriate choice of
rational polynomial; this paper has also provided a
proof of the conveagerce of the nondely model
parameters to the nondelay process parameters,
whenthe process and model dedys are eaal, in the
preserce of uncorrdated measurement noise.
Outline prodfs of the convegerce of the dely
estimate, and of al of the parameter estimates
simultaneously, will be provided in this paper; full
proofs of the relevant theaems, and subsequent
simulation wark, are available from theauthor.

2 Convergenceof the Model Delay

2.1 The deéay as an intege multiple d the
sample period

Theorem 1: For afirst order discrete stable system
of known @ain and time constant, thenthe mean of
the product of the erors (MPE) performance
surface versus modd dday index is unimodal, with
a minimum value of the MPE accurring whenthe
modd delay index equals the process delay index,
under the condtions indicated below. The dely
index is the dday divided by the sampletime.
(@ The dday variation is approximated by a first
order Taylor’s series approximation.
(b) The measuement noiseis wncorrdated with the
processinput.



(c) The resolution on the process delay is assumed
to be equal to one sample period.
(d) The error is calculated based on using a
FOLPD process model; the partial derivative of
the error with respect to the delay variation is
calculated based on using the first order
Taylor's series approximation for the delay
variation.
The process delay index is greater than the
model delay index, as the model delay index
converges.

(€)

Proof: The process difference equatiop,(n),
based on using a FOLPD process model, is

yo(n) =&y, (n-1)+ KL~ €™M u(r g-1) W »
(1)

with T, (process time constant)Ts(model time
constant) = T K, (process gain) X, (model gain)

= K and process time delay, =g,T;, T, = sample
period, g, = process delay index, u(n) = input, w(n)
= measurement noise. The model difference

equation, assuming that the previous process output
is used in its calculation and,, = model delay

index, is

Yims(M) =€ Ty,(n-)+ K1-€™T) { n- g -9 (2)
Therefore, from equations (1) and (2),

&(N = Y(N— %D =

Kl-e™Nun-g-9-un g -3+ wh

3)

The partial derivative of the error with respect to
the delay variation may then be calculated by using
a first order Taylor's series approximation for the
delay variation. The corresponding model
difference equation is (assuming the previous
process output is used in its calculation)

u(n-g,)

K - T.
Yro(n) = €Ty, (n=1) —%

Su(n-g,-3 (4)

KT —1- (9, = 9m) T
T

Therefore, from equations (1) and (4),

&(N = Y,(N~— YD =
K@L-e ™ )u(n- g - ) +Mu(n— %)

+KEe ™ -1~ (5)

-g)T.
%)u(n—gm—ww(r)

The corresponding partial derivative is

08N _ KTarin_ g y= g -
Mo -gy T LUMTg) U g,-D] (©)

The update vector for updating the model delay,
which depends on the product of the ertey(n)

multiplied by the partial derivative of the error with
respect to the delay variatiqfe,(n)/o(g, - g,)), is

then independent ofy,. The cost function that

approximately corresponds to this update vector is
the MPE function; this function is defined as
Ele, (D g( 9] in this case. The update vector that

exactly corresponds to this cost function depends
on ey(N[de( n/a( g - g & ex(nlde( n/a( ¢ - gl -

It is assumed thatey(n[oe(n/o(g- )] =
e(nN[de( n/o(g- ¢). This is a reasonable
assumption, bearing in mind that the delay
variation, which is approximated by a first order
Taylor's series approximation, is assumed to be
small. The MPE performance surface,
E[e,( 1) g( i, may then be calculated to be [5]

R S A
-

[ruu(q - ruu(:D + rUL(g »— 9 mt i)

(gp - gm) T [
T

-K2(1-e™7) Fa(9p = 9] + 1 O

(7),

+2K?(1-e ™ M)[1,,(0 — r,(g, = g,)]

r,(n) and r,(n) being the autocorrelation
functions of u(n) and w(n) respectively.
Therefore,

Ele,(n e M =r,,(0) for g, =g,.

It may be shown by comparing the sizes of the
individual terms in  equation (7) that

Ele(n &( 0 > r,,(0) for g,>g, only [5]. Thus,
the minimum value ofE[e,(n¢g( )] occurs at
gn =0, (When g, is restricted to be less than or
equal tog,) and the measurement noise has no

effect on the estimated process delay value.
If g,>g,, then, from equation (7), the

only situation that arises for  which
Ele(n g( O =r,,(0) for g, #g, is when the input
has a flat autocorrelation function, which

corresponds to a constant level input. Thus, any
input change is sufficient for correct process delay
index estimation, provided that the required
condition on g,, is fulfilled, if the process delay



index is estimated by determining the minimum of
the MPE performance surface.

However, if a gradient method is used to
estimateg, , then an additional restriction that the
MPE function must be unimodal fay, >g,,, with
a minimum MPE value occurring ad, =g,, is

imposed. The unimodality of the MPE function for
g, > 9, may be proved by induction; an outline of

the inductive proof (provided in full in reference
[5]) is as follows:

It may be proved that the MPE function at
g. =0,-1 is greater than the MPE function at

9n = g, (using equation (7)), provided that

2(1- e_TS/T)[ (0 = r(3l
#2200 - 20, +1,(3]> 0 ®)

It may also be proved that the MPE function at
g =g, - n—1 is greater than the MPE function at

On = g, — n, provided that

2(1- MM - r(n+ 9] + %[ 0 =1l 1
+$[nruu<n)—<2n+1>ruu< ne)+(m ) (e3> 0

9)
Both of the conditions in equations (8) and (9) are
fulfilled by many excitation signals e.g. a white

noise signal.

The behaviour of the MPE function (given by
equation (7)) versus model time delay index is
confrmed by Figure 1, in a representative
simulation result. For this simulation,
K,=K,=20, T,=T, =07seconds andy, =30.
The normalised MPE (equal to the MPE divided by
r,,(0)) is plotted versus model time delay index,
with r,,, (0) put to zero. The excitation signal used

is white noise. The plot shows that the MPE
performance surface is greater thap,(0) for

g, >9, only, and that when the conditions in

equations (8) and (9) are fulfiled, the MPE
function is unimodal forg, >g,,, with a minimum

MPE value occurring ag,, = g, .

Fig. 1: Normalised MPE vs. model time delay index
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A representative simulation result corresponding to
Theorem 1 is given in Figure 2, with the time delay
indices and the process minus model output plotted
against sample number.

Fig. 2: Time delay index estimate
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At the beginning, the starting values of the



process and model time delay index were both +K (€% -e™) U n- g-) (11)
equalised; a step change was then made to the
process time delay index value. In the simulation,
the update for the model time delay is a fractional
multiple of the sample period; when the addition of
these updates exceeds the value of the sample
period (in either the positive or negative direction),
then an appropriate adjustment is made in the
model time delay index, with the update for the
model time delay reset to zero. The process and

with g, = model delay minus model delay index.
The model difference equation for calculating the
partial derivative of the error with respect to the
delay variation (and assuming that the previous
process output is used in its calculation) is

Yms(N) = e/’ Ys(n—-1)

model gain and time constant parameters were put Km0t 0" 8W T g

equal to 2.0 and 0.7 seconds, respectively (i.e. the T

simulation conditions correspond to the conditions K[e T —1- (% ~9n* 9~ G Ts] un-g, -3
taken to calculate the MSE curves in Figure 1). The T
Levenberg-Marquardt gradient algorithm [6] was (12)

used to update the model time delay index; the _ _ _
sample time was defined equal to 0.1 seconds. ['his equation may be deduced from equation (4).
Coloured measurement noise, generated by low- Therefore, from equations (10) and (11),

pass filtering a white noise signal, was added. The

model time delay index was limited in variation to  €( = Ys() = Yna( D = KL= €7) { n- @)

one sample period per iteration (which is a form of +KE»™T -y n- g -1

f!lter!ng on the time delay |_ndex _valu_e); Sl_Jch —K(@L-e*"T)u(n- g,)

filtering was found to be desirable in simulation. (T TN

Good convergence to the process time delay index K(e e uUn- g -h+ v  (13)

is seen for g,>g,. Other supplementary

simulation results show no convergence to the and, from equations (10) and (12),

rocess time delay index wheg,<g,. This
g d %<0 &(1) = Y5(1) = ypo( ) = KL= &) g - g)

verifies Theorem 1. The erroe,(n) , in Figure 3 is HKET -6 (e g -1)

non-zero due to the presence of the coloured
measurement noise. SKT0,70n"0078d o

It is also possible to construct a block T _; fgi-q)
diagram representation of the gradient method to +K[e™" -1-—=" r_“r "
update the model delay index [5].

Ju(n= g, =3+ w(1)
(14)

2.2 The delay as a real multiple of the

: The MPE performance surfacgfe,( 1) g( il , may
sample period

then be calculated to be [5]

Theorem 1 dealt with the estimation of
delays that are integer multiples of the sample , Tt T
period. For the estimation of delays that are real +K*(1-e=*")(€7" —€'4) (0
multiples of the sample period (and assuming  _y2eq 4 o T/T _ o7 Tstg —a 40 - ;
T,=T,=T, K,=K,=K), the FOLPD process ( )7 (% =0 %~ &9
difference equation is [5]:

K2 [(1-e®™N)? + (e - e™)7 (0

F2K(L- e T (T - e (D
+KE(A-e (- (3
KT 1= 6T 22(g, - 6, + G, - B

— + — T
e BT 1y )

~K2(L-e*M (- e 1, (g, - )
K2 (e - e (1- 26T + €71T) 1(g, - 9,

Yo(n) =™y (n-0) + K1- &™) - g)
+KE* " -e™Un-g-H+ wn (10)

with g, = process delay minus the process delay

index. The corresponding model difference equation
(assuming the previous process output is used in its

. . — + —_ T
calculation) is KE(1- ) (9,=9nm Tgb 9. (G~ 0D

y..(n) =Ty (n-1)+ K1- &)  n- g) +K*(1-e® ™ N)(1- 26T+ T (g - g, - 3+




(9= 9n*+ G~ 9T, The partial derivative of the error with respect to

Kz(engs/T — e_Ts/T)

ruu(gp —Ont 1)

T the delay variation may then be calculated by using
a first order Taylor’'s series approximation for the
—K?®™T - e ™) (1- @) (g - G+ D+ (0 delay variation. The corresponding model

(15) difference equation is

Now, using equation (15), it may be shown that vy (n)=e™/Ty( n—1)—Mu(n—gm)
Ele,(n &( O = 1,,(0) if g, =g, andg, = g,[5]. To

Simulation results confirm the true K (€7 -PM)UUI-Qm -y (18)
multimodal nature of the MPE function versus
model delay when the delay is a real multiple of the _ _ _
sample period. The estimation of the realpvalue of fror, el(r_])TJT % W_T /Tyml( =
the process time delay, using the approach, is (e = —exm)y(n-1)
impossible using gradient methods. +K,@1-e ") un-g -9

“Knl-e™un-g, -+ wn (19)

3 Convergence of the full parameter Error,e,(n) = yy(1) - Yoo( N =

set _
K@ 90T o o

3.1 The delay as an integer multiple of the

. . . o § (9p ~ 9m) T,
sample period with white noise input K (€7 T =1 - =B =2

u(n= g, =)+ wn
Theorem 2: For a first order discrete stable system +Ky(@-e ™M u(n-g - +(eT T - ) y )
of unknown parameters, the MPE performance (20)
surface versus model delay index is minimised

when the model delay index equals the process The MPE performance surfacgfe(r g( il , may

delay index, under the following conditions: then be calculated to be [5]:
(&) The delay variation is approximated by a first
order Taylor’s series approximation. (€T - gT/Tny2 [, (0) +K 2(1-e"/")?1 (0)
(b) The measurement noise is uncorrelated with the o P .
process input and output. +K 2(1-e T/ Tm)(1- e + M)VUU(Q
(c) The resolution on the process delay is assumed Tn
to be equal to one sample period. KK (1-e ) (9p = 9m) T, (@, ~ O+ 1)

(d) The error is calculated based on using a T,
FOLPD process model; the partial deri\{at?ve (_)f ~2K K (1= ™ ™)(1- &™) (g, = g,
the error with respect to the delay variation is

calculated based on the first order Taylor's — -2K,K,(1-e /™)
series approximation for the delay variation.

(e) The conditions provided in the theorem are g _(e™/™ -e‘Ts/T”)M[Fuyl(gm—D— CR)

(9, 90T
p-I-—ruu(gp - gm)

m

observed on the model parameters. T
() The input to the model and the process is -2K, (™™ —e™™)(1- ™ ™) [, (g)+ [.(0
assumed to be a white noise signal. 9, -~ m T,

-K,2(1-e ) T o (21)

m

Proof: The process difference equatigi(n), is

White noise excitation: r (k) =r,(0) , k=0 and

y,(n) = & /T y,(n-1)+ K (1~ T/ u= g-1x wn r,,(K) = 0 otherwise;

16) ¢ (g, 4m =€) a-e¥) (O, n21,
The model difference equatiog, (n) , is fu, (95 + 1) = O otherwise [5].
yoi(n) = €y (n-1) + K (1- 6™T) ( - g -3 At g,=g,, the value of the MPE equals (using

(17) equation (21)):



MPE,, = (/" —e™/™)? ¢ (0)
HK, (21— ™) = K (1- €™ 1 + (0
(22)

By comparing the amplitudes of the individual

terms in equations (21) and (22), it may be shown

that E[e,(1) g( 3 > MPE,, for

(@) g,>9, (for all values of process and model
parameters) and

(b) 9,<9,, provided K,/K,>@,-9,)/2 and
T.2T, [5]

The conditions in (b) are sufficient, rather than

necessary conditions.

However, if a gradient method is used to
determineg, , then, as before, the MPE function
must be unimodal with a minimum MPE value
occurring at g,=g,. The conditions for

unimodality may be proved by induction [5]; these
conditions are:
(@ g,>9,: Conditions for

fulfilled for all process and model parameters.
(b) g9,<g9,: The MPE function atg, =g,+1 is

unimodality are

greater than the MPE function a, =g,,

provided that the following sufficient conditions
are obeyed:

(1-T/T K, 1-e ") > K, (1-e™/™)
and

To>T,.

(23)

The nature of the MPE function means that for
a full inductive proof, it is necessary to prove
that the MPE function ay,, = g, +2 is greater

than the MPE function at,, = g,+1 (this is

because the MPE function in equation (21)
depends onr,(9,-9,+1)). A necessary

condition for this to be true is [5]:

22Ky (1-e ) — K, (1- ) >
T p
(e — g /Tr) K,(1- D

— e /Tm _L —a /T _L
[2(1-e T)(l e ) T] (24)

m m

Similarly, it may be proved, that the MPE
function atg,, =g, + n+1 is greater than that

at g,, = g, + n, provided

-
Kp(l-e /M) =
( )7

m

Kp(l_e—TS/Tp)e—(n—Z)TS/Tp(e—TS/Tp _ éTs/Tm)

%[(n +)e?™ M —(2n+ )&+

+2(1-e /) (1- /) e (25)

This is a necessary condition.

The theorem indicates that iK, and T, are

unknown, then convergence of the model time delay
index to the process time delay index may only be
completely guaranteed if the value of the model

time delay index is always less than or equal to the
process time delay index. The behaviour of the
MPE function (given by equation (21)) versus time

delay index is confirmed, in representative

simulation results, by Figures 4 and 5. In Figure 4,
K,=20, K, =10, T,=07s andT, =10s so that

the conditions given in equations (23) and (24) (but
not (25)) are fulfiled; in Figure 5,K, =20,

K,=30, T,=07s and T, =05s, so that none of

the conditions in equations (23), (24) or (25) are
fulfiled. The normalised MPE (equal to the MPE
divided byr,,(0)) is plotted versus time delay index

in both cases, with,, (0) put to zero andy, = 30.

The excitation signal in both cases is a white noise
signal. The results are as expected from the
theorem.

Fig. 4: Normalised MPE vs. time delay index
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Fig. 5: Normalised MPE vs. time delay index
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A representative simulation result corresponding to
Theorem 2 is given in Figures 6 to 8, with the

parameters plotted against sample number. It was
also found necessary to limit the variation of the

non-time delay model parameters; for the

simulations taken0.5< K, < 30and0.5s<T, <30

s were the limits. The normalised MPE curve
corresponding to these simulation results is given
by Figure 4.

Fig. 6: Gain estimate

Sample number
Fig. 7: Time constant estimate
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Fig. 8: Time delay index estimate
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These results conform with Theorem 2.

Other simulation results show the

convergence of the model parameters to the process

parameters whemy, >g,,. It may also be shown,

using analysis similar to that performed in Section
2.2, that the MPE function determined when the
delay is a real multiple of the sample period is also
multimodal with respect to delay [5].

3.2 The delay as an integer multiple of the
sample period with square wave input

Theorem 3: For a first order discrete stable system

of unknown parameters, the MPE performance

surface versus model delay index is unimodal, with

a minimum value of the MPE occurring when the

model delay index equals the process delay index,

under the following conditions:

() The delay variation is approximated by a first
order Taylor's series approximation.

(b) The measurement noise is uncorrelated with the
process input and output.

(c) The resolution on the process delay is assumed
to be equal to one sample period.

(d) The error is calculated based on using a
FOLPD process model; the partial derivative of
the error, with respect to the delay variation, is
calculated based on the first order Taylor's
series approximation for the delay variation.

(e) The conditions provided in the theorem are
observed on the model parameters.

() The excitation signal input is a square wave
with a half period greater than the maximum
possible process delay.

Proof: The MPE performance surface is given by
equation (21). By determining the cross-correlation
terms for a square wave input [5], it may be shown
that

Ele(n g( d > MPE,, (= MPE wheng, =g,,)

when
(@ g,>9, and

(b) g9,<g9,, providedK, 2K andT =T, [5].

The conditions in (b) are sufficient, rather than

necessary conditions. Necessary and sufficient
conditions for cost function unimodality may be

determined by induction, as in Theorem 2 [5].

As before, simulation results confirm the
results of the theorem [5]. It may also be shown,
using analysis similar to that performed in Section
2.2, that the MPE function determined when the
delay is a real multiple of the sample period is also
multimodal with respect to delay [5].

4 Conclusions

A number of theorems have been developed
to analytically describe the conditions under which



the model parameters may converge to the process
parameters. The corresponding cost functions may
be unimodal whery, > g, only. Some simulations

show that unimodality can exist for all delay index
values [5]; however, various conditions must be
observed on the process and model parameters to
achieve this result, which are impossible to evaluate
prior to the implementation (as the process
parameters are generally unknown). In addition, the
inability of the relevant proposed methods to
estimate delays that are real multiples of the sample
period is disappointing. Both of these features are
difficult to reconcile with a practical application.
The requirement that in some cases the excitation
signal to the process should be of white noise form
is another difficulty, as such a signal is not
realisable in practice; however, other excitation
signals may also be used, as described in the
theorems. On a positive note, the fact that
unimodality does exist on the cost function for
some conditions, when the delay is unknoan
priori, provides some encouragement. One
possibilty may be to filter the data before
identification, as this may increase the range of
delay over which the cost function is unimodal,
though the speed of convergence of any gradient
algorithm used tends to be reduced [7]. In addition,
if the process delay index may be estimated
accurately, an estimate of a process delay that is a
real multiple of the sample period could be
determined by fitting an appropriate curve to a plot
of the cost function (calculated, perhaps, in
simulation) versus model delay index. The main
difficulty with the use of the gradient algorithm, as
implemented, is the estimation of the time delay
term. One avenue of future work that may be
fruitful would be to estimate the delay using an
alternative (non-gradient) approach, and estimate
the non-delay parameters using the gradient
approach.
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