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Abstract

This paper proposes the �rst all-neighbor fuzzy
logic data association approach in distributed
multisensor-multitarget (MSMT) tracking systems.
Unlike all fuzzy logic data association algorithms,
which assign only one observation to each track ac-
cording to some association measure, the proposed
all-neighbor fuzzy logic data association approach in-
corporates all observations within the gate of the pre-
dicted target state to update the state estimate using
a degree of membership weighted sum of innovations.
To demonstrate the feasibility, e�ciency, and simplic-
ity of the proposed approach to perform data asso-
ciation in multisensor-multitarget environment, it is
applied to an example of a four-dimensional tracking
system. The performance of the proposed approach
is evaluated using Monte Carlo simulations. Its per-
formance is also compared to the performance of the
nearest neighbor standard �lter (NNSF) and perfect
data association. The results shows that the proposed
approach is very e�cient.

1 Introduction

The problem of associating measurements and
tracking multiple-target in the presence of noise and
other interferences is a signi�cant problem in MSMT
tracking systems. There are two main categories for
data association in MSMT tracking systems; algorith-
mic and nonalgorithmic categories [4]. Algorithmic
category is based on nearest neighbor (NN) and all-
neighbor (AN) techniques. Nonalgorithmic (approxi-
mate) category is based on neural network and fuzzy
logic techniques. In general, the computational cost
in generating the optimal solutions to the data asso-
ciation problem is usually excessive when the number
of targets and the number of measurements are large.

Fuzzy logic systems has been proven very successful
in solving complicated engineering problems in many
areas where conventional approaches are either very
di�cult or ine�ciently/costly to implement. Fuzzy
logic applications to multisensor-multitarget data as-
sociation are very complicated in case of a dense target
environment. An all-neighbor fuzzy logic data associ-
ation approach is proposed to solve this problem. The
proposed method is developed based on fuzzy clus-
tering means (FCM) algorithm. The new approach
is exible and robust in that it can handle di�erent
types of information without a priori knowledge of the
signal environment. The proposed approach is applied
to a four-dimensional multisensor-multitarget tracking
system using Monte Carlo simulations. Fuzzy system
performance evaluation is presented to demonstrate
the feasibility and the e�ciency of the new approach.
The proposed approach is proved to be simple and ef-
�cient.

2 Fuzzy Clustering Means Algorithm

This section introduces the FCM algorithm which
is the best widely used clustering algorithm. This al-
gorithm is developed by J. Bezdek [12], [13]. The goal
of any fuzzy clustering algorithm is to classify the data
into a number of clusters (groups). The clustering al-
gorithms produce a degree (grade) of membership for
each data point in each cluster. Unlike the conven-
tional meaning of clustering, which means a partition-
ing of objects into disjoint clusters, the fuzzy cluster-
ing allows a data point x to have a partial degree of
membership in more than one set [14], [15]. A fuzzy
set A in a collection of objects X is de�ned as:

A = f(x; uA(x)) j x 2 Xg; (1)

where uA(x) is the degree of membership function
of data point x in fuzzy set A. Given a number of
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data points, it is required to group (cluster) the data
into clusters according to some similarity measure [3].
Let c be an integer which represents the number of
clusters with 2 � c � n where n is the number of
data. De�ne U as a partition matrix of elements uij ,
i = 1; 2; :::; c; j = 1; 2; ::::; n, where uij represents the
degree of membership of data point j in fuzzy cluster
i, such that :

uik 2 [0; 1]; 1 � i � c; 1 � k � n; (2)

cX
i=1

uik = 1 8k; (3)

0 <

nX
k=1

uik < n 8i: (4)

De�ne Jm as the sum of all square errors weighted by
the mth power of the corresponding degree of mem-
bership i.e.

Jm(U;v) =

nX
k=1

cX
i=1

(uik)
m (dik)

2; (5)

where
(dik)

2 = k xk � vi k
2; (6)

and k k is any inner product induced norm,m 2 [1;1)
is a weighting exponent and is called the fuzzi�cation
constant, xk is a data point and vi is a cluster cen-
ter. The degrees of membership will be established by
minimizing the sum of all square errors weighted by
the corresponding mth power of the degree of mem-
bership. The goal of the fuzzy clustering algorithm
is to determine the optimum degrees of membership
uik8i; k and the optimum fuzzy cluster centers vi 8i
such that the sum of the square errors Jm is minimum.
The results are derived using Lagrange multipliers and
taking derivatives. The results are given by [16]:

uik =
1

[
Pc

j=1(
dik
djk

)
2

m�1 ]
8 i ; k; (7)

vi =

Pn

k=1(uik)
m
xkPn

k=1(uik)
m

8 i : (8)

Solution (9) is valid for a �xed V (V =
v1;v2; ::::::;vc), and solution (10) is valid for a �xed
U. In MSMT tracking systems, c is the number
of targets, n is the total number of received mea-
surements, xk is s-dimensional measurement vector,
k = 1; 2; ::::; n, and vi is s-dimensional predicted vec-
tor for target i, i = 1; 2; ::::; c. The fuzzy c-means clus-
tering algorithm referred to as the Picard algorithm.
The Picard algorithm is guaranteed to converge to a
local minimum [20].

3 Proposed All-Neighbor Fuzzy Asso-

ciation Approach

The probability theory deals with randomness
which describes the uncertainty of occurrence. The
fuzzy set theory deals with fuzziness which describes
ambiguity. Unlike randomness, which determines the
probability of an event to occur (it may occurs or not
occur) , fuzziness determines the degree of member-
ship that an event occurs (not whether it occurs).
Kosko [1], addressed the similarities and the dissimi-
larities of probability theory and fuzzy set theory. Al-
though both theories describe uncertainty in the in-
terval [0,1], they di�er conceptually and theoretically.
Kosko [1] addressed the following important question:
does the degree of membership to which an element
belongs to fuzzy set equal the probability that the
same element belongs to the same set. Toward that di-
rection, he developed the fuzzy Subsethood theorem,
which implies the Bayes theorem or equivalently, prob-
abilities represent a special case of fuzziness. Buede
[2], compared both approaches (fuzzy set and Bayes
approaches) for target identi�cation in a data fusion
system. He showed that the fuzzy set theorem's results
are inferior to those of probability theorem's results.
This result is expected since the probability theorem
utilizes a prior information about the underlying pro-
cess. Buede [2] also showed that sometimes the results
of both approaches are similar and sometimes they are
dissimilar.

Bar-Shalom and Fortman [7], developed the Prob-
abilistic Data Association Filter (PDAF) which up-
dates the predicted target state using a probability
weighted sum of innovations (probabilistic score). Our
proposed approach associates measurements into track
using a degree of membership score. Unlike many
fuzzy logic data association algorithms [4], [16]-[19],
which consist of four basic elements: 1) fuzzi�cation
of crisp data into fuzzy variables, 2) fuzzy knowledge
base which contains IF THEN rules and fuzzy state-
ments, 3) fuzzy inference mechanism which stimulates
human decision making procedure to generate output
fuzzy variables and 4) defuzzi�cation of fuzzy vari-
ables into non-fuzzy variables (crisp data), the pro-
posed approach performs all-neighbor data association
based on the partition matrix of data (measurements)
in fuzzy clusters (tracks).

Each row in the obtained partition matrix, given
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by (7), is normalized such that for a given track i, the
contributions of all observations must equal unity, i.e.

nX
i=1

uik = 1 8 k: (9)

For a given track, the state estimate at time K + 1 is
given by

X̂(K + 1 j K + 1) = X̂(K + 1 j K) + (10)

W(K + 1)

nX
k=1

uik(K) ~zk(K + 1);

where ~zk(K + 1) is the innovation due to observation
k at time instant (K + 1) i.e.

~zk(K + 1) = zk(K + 1)� ẑ(K + 1); (11)

andW(K+1) is the standard Kalman �lter gain. The
state update equation is then given by

X̂(K+1 j K+1) = X̂(K+1 j K)+W(K+1) ~z(K+1);
(12)

where

~z(K + 1) =

nX
k=1

uik(K + 1) ~zk(K + 1) ; (13)

is the sum of all weighted innovations. The weights are
the normalized grades of membership function given
by (9). The update covariance matrix can also derived
as [7]:

P(K+1 j K+1) = P1(K+1 j K+1)+~P(K+1); (14)

where

P1(K+1 j K+1) = [I�W(K+1)H(K+1)]P(K+1 j K);
(15)

is the standard covariance update equation, and

~P(K + 1) = W(K + 1) [

nX
k=1

uik(K + 1) (16)

~zk(K + 1) ~z0k(K + 1)� ~z(K + 1) ~z0(K + 1) ]

W
0(K + 1):

If there is no observation within the gate of a given
track, the update state estimate will be the previous
estimate, i.e.

X̂(K + 1 j K + 1) = X̂(K + 1 j K): (17)

Note that (6) is valid for any inner-product-induced
norm metric and Jm can be written as

Jm(U;v; G) =

nX
k=1

cX
i=1

(uik)
m (dik)

2

G; (18)

where

(dik)
2

G = (xk � vi)
T G (xk � vi); (19)

and G is any positive-de�nite matrix [12]. In this case,
(dik)G is called weighted distance. The matrix G may
be used as a theoretical variable for optimization [13]
or can be chosen subjectively. For example, it is con-
venient to choose G to be related to the covariance
matrix of the measurement error such that the larger
the measurement error the larger is the distance (the
smaller is the degree of membership) and vice versa.
The fuzzi�cation constant, m (also is called weight-
ing exponent), plays an important rule. It reduces the
inuence of noise when computing the degrees of mem-
bership (7) and the cluster centers (8). The weighting
exponent m reduces the inuence of small uik (data
are faraway from the cluster centers) compared to that
of large uik (data are close to the cluster centers) [22].
As m increases, the inuence becomes stronger. For
more details about the rule of the weighting exponent
see Windham, [15], [23].

4 Performance Evaluation

One example is presented to demonstrate the fea-
sibility and the e�ciency of the proposed all-neighbor
fuzzy logic data association algorithm in multisensor
multitarget tracking systems. The example considers
the case of a two crossing targets without acceleration.
The targets motion model is assumed to be :

X(K + 1) = FX(K) ; (20)

where � is the sampling interval and F is the state
transition matrix and is given by

F =

0
BB@

1�0 0
0 1 0 0
0 0 1�
0 0 0�

1
CCA : (21)

The state vector X(K) contains the x and y target
positions and velocities, i.e.

X(K) =

0
BB@

x(K)
vx(K)
y(K)
vy(K)

1
CCA : (22)

The measurements are the x and y target positions,
i.e.

z(K) =H(K) +w(K) (23)
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where

H =

�
1 0 0 0
0 0 0 1

�
: (24)

The noise sequence w(K) are uncorrelated with zero
mean Gaussian pdf and covariance matrix

RK = Cov(w(K)) =

�
�2x 0
0 �2y

�
; (25)

where �2x and �
2

y are the variances of the measurements
error in x and y positions. The measurement error is
de�ned as

e =
q
e2x + e2y =

p
(xtrue � x̂)2 + (ytrue � ŷ)2 : (26)

In our example, we assume that X and Y posi-
tions (measurements) are taken every 0.1 second,
with sensor uncertainities �x1=�y1= 150 meters and
�x2=�y2= 200 meters. The initial targets states are
given by

Xt1(0) =

0
BB@

6000 m
158:9 m=sec

6000 m
3:3 m=sec

1
CCA ; (27)

Xt2(0) =

0
BB@

6000 m
158:9 m=sec

6050 m
�3:3 m=sec

1
CCA : (28)

In case of NNSF, the nearest observation, that maxi-
mizes the likelihood function of the residual error as-
sociatied with the selection, is selected to update the
target's track. Maximization of the likelihood func-
tion is equivalent to minimize the following distance
[21]:

d2 = d2ij + lnjSij; (29)

where d2ij is the weighted sum of innovation, i.e.

d2ij = [zj � ẑi]
0

S
�1

i [zj � ẑi] ; (30)

and Si is the residual covariance matrix and is given
by :

Si = HPH 0 +R : (31)

The measurements initializations are obtained from
the �rst two measurements. We process 150 measure-
ments (15 seconds of data) over a 50 runs Monte Carlo
simulations. Tracking results are shown in Fig. 1 -
Fig. 4. Fig. 1 shows the actual targets trajectories.
Fig. 2 shows the actual targets trajectories along with
the measurements trajectories. Fig. 3 shows the ac-
tual targets trajectories along with the mean Kalman

Filter (KF) track ( estimated positions) obtained us-
ing the proposed fuzzy approach. Fig. 4 shows the
mean measurement error for both targets. Fig. 5 and
6 show the results of tracking using the NNSF. Fig. 7
and 8 show the results in case of perfect data associ-
ation. The results show that the proposed apprpoach
successfully tracks both targets and its performance is
superior to that of the NNSF.

5 Conclusion

The problem of data association in MSMT tracking
systems has been considered. An all-neighbor fuzzy
logic data association approach has been proposed.
The proposed approach incorporates all the observa-
tions within the gate of the predicted target state to
update the state estimate using a degree of member-
ship weighted sum of innovations. Performace evalu-
ation has been evaluated using Monte Carlo simula-
tions. It has been shown that the proposed approach
has better performance over a comparable NNSF ap-
proach and is proved to be e�cient with respect to
perfect data association. This is the �rst all-neighbor
data association approach in multisensor multitarget
tracking systems. Of course the proposed approach is
not the optimal approach. The results are promising
and shows the feasibility and the e�ciency of using
fuzzy logic approach in all-neighbor data association
techniques.
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Figure 1: Actual Targets Trajectories
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