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Abstract | A theoretically attractive and com-

putationally fast algorithm is presented for the

determination of the coe�cients of the deter-

minantal polynomial and the coe�cients of the

adjoint polynomial matrix of a given 2{D state

space model of Fornasini{Marchesini type. The

algorithm uses the discrete Fourier transform

(DFT) and can be easily implemented on a dig-

ital computer. 1

INTRODUCTION

During the past two decades there has been extensive
research in multidimensional systems. This is due to
the extensive range of applications, especially in signal
and image processing, geophysics etc., [1]{[3]. State
space techniques play a very important role in the anal-
ysis and synthesis of 3{D systems. An interesting the-
oretical problem is to determine the coe�cients of a
transfer function from its state space representation
and vice versa. In going from the transfer function to
state space model a various number algorithms have
been proposed. In the case where a state space model
is available the Leverrier, Vanderlmode matrices or the
DFT algorithms can be used [4]{[7]. The DFT has
been used for the evaluation of the transfer functions
for multidimensional systems of the Roesser type [8].
In this paper a computer implementable algorithm

is proposed, using the DFT, for the computation of
the 3{D transfer function for the Fornasini{Marchesini
3{D state space models [9]. The proposed algorithm
determines the coe�cients of the determinantal poly-
nomial and the coe�cients of the adjoint polynomial
matrix, using the DFT algorithm. The computational
speed of the method could be improved using the Fast
Fourier Transform.
Three{dimensional (3{D) state space models of the

Fornasini { Marchesini type have the following struc-
tures [9]:
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First F{M model

x(i1 + 1; i2 + 1; i3 + 1) = A1x(i1 + 1; i2; i3)

+ A2x(i1; i2 + 1; i3)

+ A3x(i1; i2; i3 + 1)

+ bu(i1; i2; i3) (1)

y(i1; i2; i3) = c0x(i1; i2; i3)

Second F{M model

x(i1 + 1; i2 + 1; i3 + 1) = A1x(i1 + 1; i2; i3)

+ A2x(i1; i2 + 1; i3)

+ A3x(i1; i2; i3 + 3)

+ b1u(i1 + 1; i2; i3) (2)

+ b2u(i1; i2 + 1; i3)

+ b3u(i1; i2; i3 + 1)

y(i1; i2; i3) = c0x(i1; i2; i3)

where, x(i1; i2; i3) 2 Rn, u(i1; i2; i3) 2 Rm,
y(i1; i2; i3) 2 Rp;Ak;Bk for k = 1; 2; 3 and c, are real
matrices of appropriate dimensions.

Applying the 3{D zi; (8 i = 1; 2; 3) transform to the
systems (1) and (2), with zero initial conditions, their
transfer functions respectively become:

T1(z1; z2; z3) = c0 [Iz1z2z3 �A1z1 �A2z2 �A3z3]
�1b

(3)
and

T2(z1; z2; z3) = c0 [Iz1z2z3 �A1z1 �A2z2 �A3z3]

� (b1z1 + b2z2 + b3z3) (4)

In the following section an interpolative approach
is developed for determining the transfer function
T (z1; z2; z3), given the matrices Ak;Bk for k = 1; 2; 3
and c, using the DFT. For the sake of completness a
brief description of the DFT follows.



3{D DFT

Consider the �nite sequences X(k1; k2; k3) and
~X(r1; r2; r3), �i; �i = 0; � � � ;Mi; 8 i = 1; 2; 3. In or-
der for the sequences X(k1; k2; k3) and ~X(r1; r2); r3),
to constitute a 3{D DFT pair the following relations
should hold [10]:

~X(r1; r2; r3) =

M1X

k1=0

M2X

k2=0

M3X

k3=0

X(k1; k2; k3)

� W�k1r1
1 W�k2r2

2 W�k3r3
3 (5)

X(k1; k2; k3) =
1

R

M1X

r1=0

M2X

r2=0

M3X

r3=0

~X(r1; r2; r3)

� W k1r1
1 W k2r2

2 W k3r3
3 (6)

where,

R =

3Y

i=1

(Mi + 1) (7)

Wi = e(2�j)=(Mi+1); 8 i = 1; 2; 3 (8)

X , ~X are discrete argument matrix valued functions,
with dimensions

X = [xi1;i2;i3 ]; i = 1; : : : ; p

~X = [~xi1;i2;i3 ]; j = 1; : : : ;m

FIRST F{M: ALGORITHM

The transfer function of the �rst Fornasini { Marchesini
3{D state space model (1) has the structure,

T (z1; z2; z3) =
N(z1; z2; z3)

d(z1; z2; z3)
(9)

where,

N(z1; z2; z3) = c0 adj [Iz1; z2; z3

�A1z1 �A2z2 �A3z3]b (10)

d(z1; z2; z3) = det [Iz1; z2; z3

�A1z1 �A2z2 �A3z3] (11)

Taking into consideration that

n = degz1 [N(z1; z2; z3)] = degz2 [N(z1; z2; z3)]

= degz3 [N(z1; z2; z3)]

and

n = degz1 [d(z1; z2; z3)] = degz2 [d(z1; z2; z3)]

= degz3 [d(z1; z2; z3)]

where, degz1 [ ], degz2 [ ], degz3 [ ] denote the degrees
with respect to z1; z2; and z3; respectively. Equations
(10) and (11) can be written in polynomial form as
follows:

N(z1; z2; z3) =

nX

�=0

nX

�=0

nX

�=0

P�;�;�z
�
1 z

�
2 z

�
3 (12)

d(z1; z2; z3) =

nX

�=0

nX

�=0

nX

�=0

q�;�;�z
�
1 z

�
2 z

�
3 (13)

where, P�;�;� are matrices with dimensions (p � m),
while q�;�;� are scalars.
The numerator polynomial matrix N(z1; z2; z3) and

the denominator polynomial d(z1; z2; z3) can be numer-

ically computed at R =
Q3

i=1(Mi + 1), points, equally
spaced on the unit 3 � D space. The R points are
chosen as

Wi =W = e(2�j)=(Mi+1); 8 i = 1; 2; 3 (14)

The values of the transfer function (9) at the R points
are its corresponding 3{D DFT coe�cients.
Moreover, we de�ne

v1(r) = v2(r) = v3(r) =W r; 8 r = 0; : : : ; n (15)

Denominator polynomial

To evaluate the denominator coe�cients (q�;�;�), de-
�ne,

ai1;i2;i3 = det [Iv1(i1)v2(i2)v3(i3) (16)

�A1v1(i1)�A2v2(i2)�A3v3(i3)]

Therefore using equations (13), (16) yield

ai1;i2;i3 = d[v1(i1); v2(i2); v3(i3)] (17)

Provided that at least one of ai1;i2;i3 6= 0:
Equations (13), (15) and (17) yield

ai1;i2;i3 =

nX

�=0

nX

�=0

nX

�=0

q�;�;�W
�(i1�+i2�+i3�) (18)

Using equations (18) and (5) it is obvious that,
[ai1;i2;i3 ]; [q�;�;�] form a DFT pair. Therefore the coef-
�cients q�;�;� can be computed, using the inverse 3{D
DFT, as follows:

q�;�;� =
1

R

nX

i1=0

nX

i2=0

nX

i3=0

ai1;i2;i3W
(i1�+i2�+i3�) (19)

where, �; �; � = 0; : : : ; n



Numerator Polynomial

To evaluate the numerator matrix polynomial P�;�;�,
de�ne

Fi1;i2;i3 = c0 adj [Iv1(i1)v2(i2)v3(i3) (20)

�A1v1(i1)�A2v2(i2)�A3v3(i3)]b

Provided that at least one of Fi1;i2;i3 6= 0:
Therefore using equations (10),(20), yields

Fi1;i2;i3 =N[v1(i1); v2(i2); v3(i3)] (21)

Equations (12), (15) and (21) yield

Fi1;i2;i3 =

nX

k=0

nX

r=0

nX

r=0

P�;�;�W
�(i1�+i2�+i3�) (22)

Using equations (19) and (5) it is obvious that,
[Fi1;i2;i3 ]; [P�;�;�] form a DFT pair. Therefore the co-
e�cients P�;�;� can be computed, using the inverse 3{D
DFT, as follows:

P�;�;� =
1

R

nX

i1=0

nX

i2=0

nX

i3=0

Fi1;i2;i3W
(i1�+i2�+i3�) (23)

where, �; �; � = 0; : : : ; n:
Finally, the transfer function sought is,

T (z1; z2; z3) =
N(z1; z2; z3)

d(z1; z2; z3)
(24)

where,

N(z1; z2; z3) =

nX

�=0

nX

�=0

nX

�=0

P�;�;�z
�
1 z

�
2 z

�
3 (25)

d(z1; z2; z3) =

nX

�=0

nX

�=0

nX

�=0

q�;�;�z
�
1 z

�
2 z

�
3 (26)

SECOND F-M: ALGORITHM

The transfer function of the second Fornasini{
Marchesini 3{D state space model has the structure,

T (z1; z2; z3) =
N(z1; z2; z3)

d(z1; z2; z3)
(27)

where,

N(z1; z2; z3) = c0 adj [Iz1; z2; z3 �A1z1 �A2z2

�A3z3]

� (b1z1 + b2z2 + b3z3) (28)

d(z1; z2; z3) = det [Iz1; z2; z3 �A1z1 �A2z2

�A3z3] (29)

Taking into consideration that

n = degz1 [N(z1; z2; z3)] = degz2 [N(z1; z2; z3)]

= degz3 [N(z1; z2; z3)]

and

n = degz1 [d(z1; z2; z3)] = degz2 [d(z1; z2; z3)]

= degz3 [d(z1; z2; z3)]

where, degz1 [ ], degz2 [ ], degz3 [ ] denote the degrees
with respect to z1; z2; and z3; respectively. Equations
(28) and (29) can be written in polynomial form as
follows:

N(z1; z2; z3) =

nX

�=0

nX

�=0

nX

�=0

P�;�;�z
�
1 z

�
2 z

�
3 (30)

d(z1; z2; z3) =

nX

�=0

nX

�=0

nX

�=0

q�;�;�z
�
1 z

�
2 z

�
3 (31)

where, P�;�;� are matrices with dimensions (p � m),
while q�;�;� are scalars.
The numerator polynomial matrix N(z1; z2; z3) and

the denominator polynomial d(z1; z2; z3) can be numer-

ically computed at R =
Q3

i=0(Mi + 1) points, equally
spaced on the unit 3{D space. The R points are chosen
as

Wi =W = e(2�j)=(Mi+1); 8 i = 1; 2; 3 (32)

The values of the transfer function (27) at the R

points are its corresponding 3{D DFT coe�cients.
Moreover, we de�ne

v1(r) = v2(r) = v3(r) =W r; 8 r = 0; : : : ; n (33)

Denominator Polynomial

To evaluate the denominator coe�cients (q�;�;�), de-
�ne,

ai1;i2;i3 = det [Iv1(i1)v2(i2)v3(i3)�A1v1(i1)

�A2v2(i2)�A3v3(i3)] (34)

Therefore using equations (5) and (34) yield

ai1;i2;i3 = d[v1(i1); v2(i2); v3(i3)] (35)

Provided that at least one of ai1;i2;i3 6= 0:
Equations (31), (33) and (35) yield

ai1;i2;i3 =

nX

�=0

nX

�=0

nX

�=0

q�;�;�W
�(i1�+i2�+i3�) (36)



Using equations (36) and (5) it is obvious that,
[ai1;i2;i3 ]; [q�;�;�] form a DFT pair. Therefore the coef-
�cients q�;�;� can be computed, using the inverse 3{D
DFT, as follows:

q�;�;� =
1

R

nX

i1=0

nX

i2=0

nX

i3=0

ai1;i2;i3W
(i1�+i2�+i3�) (37)

where, �; �; � = 0; : : : ; n

Numerator Polynomial

To evaluate the numerator matrix polynomial P�;�;�,
de�ne

Fi1;i2;i3 = c0 adj [Iv1(i1)v2(i2)v3(i3)�A1v1(i1)

�A2v2(i2)�A3v3(i3)]

� (b1v1(i1) + b2v2(i2) + b3v3(i3))

Provided that at least one of Fi1;i2;i3 6= 0:
Therefore using equations (5) and (38), yields

Fi1;i2;i3 =N[v1(i1); v2(i2); v3(i3)] (38)

Equations (30), (33) and (39) yield

Fi1;i2;i3 =

nX

k=0

nX

r=0

nX

r=0

P�;�;�W
�(i1�+i2�+i3�) (39)

Using equations (40) and (5) it is obvious that,
[ai1;i2;i3 ]; [q�;�;�] form a DFT pair. Therefore the coef-
�cients q�;�;� can be computed, using the inverse 3{D
DFT, as follows:

P�;�;� =
1

R

nX

i1=0

nX

i2=0

nX

i3=0

Fi1;i2;i3W
(i1�+i2�+i3�) (40)

where, �; �; � = 0; : : : ; n:
Finally, the transfer function sought is,

T (z1; z2; z3) =
N(z1; z2; z3)

d(z1; z2; z3)
(41)

where,

N(z1; z2; z3) =

nX

�=0

nX

�=0

nX

�=0

P�;�;�z
�
1 z

�
2 z

�
3

� (b1z1 + b2z2 + b3z3) (42)

d(z1; z2; z3) =

nX

�=0

nX

�=0

nX

�=0

q�;�;�z
�
1 z

�
2 z

�
3 (43)

CONCLUSION

In this paper the well known DFT algorithm has been
used for determining the coe�cients of a 3{D trans-
fer function from its 3{D state space of Fornasini{
Marchesini type. The algorithms are theoretically at-
tractive and can be easily implemented. The results
presented here may be extended tothe multidimen-
sional case.
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