
A Java based web application which addresses urban traffic
problems relying on real time collected data.

F. BELLOTTI, A. DE GLORIA, D. GROSSO
Department of Biophysical and Electronic Engineering (DIBE)

University of Genoa
Via Opera Pia 11a 16145 Genoa

ITALY

Abstract: - Abstract: - In this paper we present a web application entirely developed in Java. The application deals
with the problem of computing the shortest path between a chosen origin-destination pair, in a urban context with
multimodal means of transport and time dependent traffic conditions. The city is modeled as an adirected graph,
where each node represents a strategic point of the city. The overall application consists of a graphic interface
embedded in an html page and of a server program. Through the interface the user can interact with a remote server
that computes the smallest time path for the user selected couple of departure and arrival nodes. Particular attention is
spent to provide a realistic model of the multimodal transportation system. Finally we provide an estimation of our
system’s performance on different operative platforms. IMACS/IEEE CSCC'99 Proceedings, Pages: 1121-1127

Key-Words: - Web, Java, traffic, multimodal transport, shortest path, personal communication systems, real time.

1. Introduction
The traffic problem is one of the main unresolved
issues that threaten the quality of life in modern cities.
A bad utili zation of the public means of transport,
even more than specific shortcomings in the service, is
a not negligible reason that can explain the massive
resort to private means by most of the citizens. This is
essentially due to a lack of information on the user
part. In fact local transport schedules, especially in
wide and complex urban areas, are often diffcult to
know or to remember even because of the wide range
of services that the transport companies have to
provide. Moreover schedules and travel time may vary
during the day because of different traffi c conditions,
that are not always predictable. Since all this mass of
information is unlikely to be known by the people, and
in particular by tourists, a good solution to the
problem could be the utilization by the user of a
communication device through which he or she can
connect to a centralised server that computes the best
transport solution consulting an accurately real time
updated database.
This paper presents a web-based implemetation of an
algorithm aimed at finding the minimum path, in terms
of elapsed time, between two points in a town. As a
proof of concept we applied this solution to the city of
Genoa (Fig 1), where traffi c is a critical problem, but
the algorithm is obviously generally applicable. At
present the public transport net of Genoa consists of
capillar bus and railway services and of a short

underground (Fig 2). We built a model of the town as
a net of interconnected points that represent bus
stations, railway stations and other important places of
the town. At each node is associated a frequency of
departure for the public means of transport, while at
each branch is associated the time required to cover it
by any possible means of transport. Our solution
provides a simulationless computation of the
minimum time path connecting the chosen start and
arrival points.
The programming language chosen for the overall
implementation of the project was Java, principally for
its intrinsic features of portabilit y, security code
density[1, 2] and robustness, that make it particularly
suited to applications that can be deployed on
computer networks[3, 4, 5].
In the present specifi c case, clients can download a
visual-appealing, easy to manage applet from the
internet on either their desktop or personal
communication system or car computer or on small
coputers that may be located in special kiosks near bus
stops. By means of the applet's graphic user interface,
customers can submit to a service provider
information about their planned journey through the
city (typically: departure and arrival places, time of
departure) and get in real time the most suitable path
to go to destination. Customers can choose which
means of transport to use from a set of predifined
means including train, car, taxi, bus and metro. The
possibility of going on foot is also considered.

Figure 1 A schematic representation of the central zones of the city of Genoa. The famous old harbour is located by the
zones numbered from 9 to 14.

Figure 2 Bus and train of the Genoa’s public transportation system.

Real time information about traffic, viability and train
circulation is gathered from different on the field
dislocated information sources and elaborated by a
server program, written in Java language. The program
is an extended implementation of the Dijkstra’s
shortest path algorithm [6]. The extension primarily
consists in keeping into account the possibility of
using different means of transport during the journey.
Connections between different means, also of the
same kind (i.e. bus-bus connections), have been
considered and carefully modeled at any stations.
Further problems and aspects have also been tackled,
such as the run-time minimization of the network
connections complexity in order to reduce
computation time without compromising the quality
and the correctness of the resulting information.
Information about car park availability is also
concerned.
In the absence, at present, of a net of traffic sensors
deployed in the city, for the current implementation it
has been chosen to follow a completely analytical
approach. In particular we use statistically computed
mean values for certain variables such as the travelling
time between different nodes. Statistics are obtained
from on the field information.

2. The Model
The model we built to represent the city of Genoa is a

network of 45 interconnected nodes. We split the big
Genoa area in 5 geographical zones and we took as
nodes the more important places of each zone. The
nodes represent either a train station or a strategic
point for the traffic or a place where economic,
cultural or other important activities take place. Fig. 3
shows a simplified network scheme and the position of
some nodes on the territory. The nodes can be
connected either by public transport means, such as
bus, train and taxi, or through private car or on foot, as
shown in Fig 4. Each branch of the graph is assigned a
weight that represents the time spent to go through it.
For example from the Fig 4 we deduce that it is
possible to go from node CO to node BZ in 4 minutes
using the train, in 19 minutes using the bus, in 16
minutes using the car and so forth. In addition to the
data described so far, that concern with inter-nodes
transport, the model receives as input other
information describing the modality of change of
means of transport within each node. Usually two
nodes can be connected by more than one bus or train
lines; in this case the model specifies the frequency of
each bus and train line, in order to provide users with
more precise information about which means to take
and how much time to wait at a node to get the next
means, as will be more clear from the description of
the algorithm. For simplicity, we consider that all the
bus lines connecting two adjacent nodes take the same
time to reach the destination. However even this

constraint, though realistic, can be removed. Each
node is also assigned two parameters that indicate the

time spent to park the car and the time required to
have a taxi ready.

Figure 3 A portion of the network of nodes that models the city

Figure 4 Three nodes connected by different means of transport, and the associated travelling times.

All the values and parameters of the model are taken
from the real world. For example, the train frequency
and the travel duration are taken from the official
timetables of the national railway and for the bus we

consider the data supplied by the local transport
company[7]. As it happens in the real world the
schedules for all the transport means are variable in
function of the considered day and hour. And the same

is true for the duration of the car travel. At present we
do not take into account the financial costs connected
with the travel (i.e. the cost of taxi, fuel, bus or train
fare…). A precise model at this regard, though, would
not be difficult to elaborate. Moreover, as long as only
public transport means are concerned, the overall cost
is easily computable since there is a 90-minute validity
unified ticket that allows people to move anywhere in
the city using buses and trains at the cost of £1500
(US$ 0.9).
In order to speed up the computation of the algorithm
we consider the overall area as the union of 5 zones of
the town. Some nodes, in particular the most important
ones, can belong to two neighbour zones and are
included in the graphs of both. When the user select
the start and the arrival stations our system
dynamically builds a reduced graph that consists of the
smallest network, according to the 5 zones model, that
contains the two stations. The subdivision is suggested
by the analysis of the traffic flows that are mainly
directed inward or outward the centre, respectively
from or to more peripheral areas. Moreover, this
reduction is particularly appealing in the case of
Genoa, that has a prominent latitudinal configuration
and thus it quite easily lends itself to a subdivision in
partial areas. At this point the algorithm can begin its
work on this partial network.

3. The Program
The overall service we have developed consists of two
different applications, both written in Java. One is on
the client side and is the applet which can be
downloaded through the Internet by the user at home
or in his/her car or on the airplane arriving at the city.
The applet is the interface that collects data
representing the user’s request. The other application
is a server program which is triggered by user’s data,
executes the algorithm that finds the shortest path
between the departure and destination nodes and sends
the results back to the user.
3.1 The Applet
The user interface is implemented by means of an
interactive Java applet (Fig 5). The client is invited to
choose the departure and arrival nodes between a list
of 45 fixed nodes. The user can also specify which
kind of means of transport he or she intends to take.
From another point of view, he can select which
means (e.g. taxi, car) not to use. Other information
concerns the forseen hour of departure, because the
traffic conditions and the schedules obviously heavily
depend on it. This is the basic model of interaction
with the user. More complex models of interface may
involve the enabilitation/disabilitation of features such

as the change-times at nodes, as we will furhter
describe. Data so far collected is sent to the server via
socket. Then the applet waits for the response from the
server and displays the final information showing the
overall cost, in terms of time, of the travel and
detailing for each covered node which means to use,
how much time to spend and eventually, in the case of
bus or train connection, which lines to take and the
final destination of each line 1 (Fig 6). It is worth to
note that in the last case, not all the lines connecting
two nodes are reported, but only those that are
effectively usefull to user, as will be explained in the
algorithmic section. More attractive and pleasant
interface, possibly invilving the visualization of the
path on a map, may obviously be developed in the
future.

3.2 The Server side program
The server program is triggered by user’s data. It
initially builds the dynamic graph, in order to reduce
the computational effort, as described in the previous
section. Then it executes an ad hoc specialized version
of the shortest path algorithm.

3.2.1 The shortest path algorithm
The most efficient algorithm for the solution of the s-a
(start-arrival) shortest path problem was given initially
by Dijkstra [8, 9]. The method described below
applies to adirected cyclic trees with the proviso that
no negative cost circuits exist and it consists in
assigning temporary labels to the vertices of the graph.
Each label records the expected cost to reach the
corresponding vertex from the departure node. These
labels are then updated by an iterative procedure that
converges in at most N-1 iterations, where N is the
number of nodes in the graph. A simple, not
optimized, version of the Dijkstra algorithm is
sketched below:

Let Jk(x) be the label on vertex x at the k-th iteration
of the algorithm.
Initialization
J0(s)=0.
J0(x) is set to Inf. (practically, a very large numeric
value, as compared to the other partial costs) for all the
other x’s.
Updating of label
For each k-th iteration, with k in[1,N-1], for each node
x the updated cost is computed.as shown in (1);

)}(1),({
)(

min)(vkJxvC
xVv

xkJ −+
∈

= (1)

1 This features is ideallly suited to tourists that have no knowledge of the
city.

)},({cosmin act
SMTc∈

)}},,*,(),*({cos
*

min

),,({
)(

min

),(cos_

nccvchangetvct
SMTc

vnct
nVv

nctupdate

+
∈

+

+
∈

=

Figure 5 The interface through which the user can get information aout his planned path.

Figure 6 The output of the program shows the travel time and some details on the adviced means of transport

where V(x) is the set of the neighbourgh nodes of
node x. The complexity of the algorithm is O(N3),
where N is the number of nodes in the tree.

3.3 The modified version of the algorithm
The model we have developed involves the utilization
of different interchangeable means of transport. This
means that multiple labeled branches may connect two
adjacent nodes and that at each node the eventual time
required to change the means is to be calculated. In
order to meet our specifications, Dijkstra’s algorithm
has been modified in that at each iteration, for each
node n, the cost (cost(c, n)) is computed to reach it
with each kind of selected means of transport c.
In the end, the best solution for the arrival node a is
singled out as:

(2)

Where SMT is the pool of the selected means of
transport.
The overall complexity of the algorithm is O(CN3),
where C is the number of considered means of
transport. The core of the algorithm consists in the
upadate_cost function, that computes the next_cst
value (i.e. the time that it takes the user to arrive to
node n with the c mean) :

(3)

SMTccsJ ∈∀= 0),(0

(t))NP-(1(t))2P-(1 (t))1P-(1 T)P(t …=>

n}Pr{v, * n) BW(v,n) BWB(v, =

where the outermost minimum is computed on all the
nodes that can directly reach node n, while the
innermost is computed on all the selected kinds of
vectors. T(c,n,v) is the time required to go from n to v
with the c means. If n is the arrival node, it must be
added a final cost for cars (i.e. the time required to
park the car2).
The following rule applies to the departure node
s:

(4)

While the initial cost for s is added as the term
tchange(s, ,c,n) of the equation used to compute the cost
to reach a neighbour node n from s. Table 1 shows the
initial costs for the different means.

Car 0
Train Train_waiting_time(s,n)
Bus Bus_waiting_time(s,n)
Foot 0
Taxi Taxi_waiting_time(s)
Metro Metro_waiting_time

Table 1 Initial costs for the different means of transport

Metro_waiting_time is constant for all the stations,
because there is only one metro line in Genoa. For
simplicity we have assumed that the initial cost for a
car is 0, although an advanced interface option can
allow user to specify his/her time required to reach the
car. On the other hand, for means such as buses and
trains that involve the utilization of different lines, a
more complex function is required. In this case the
waiting_time is the expected value of the probablity
that user waits for more than T minutes. In the case of
N different lines connecting node s to n, the
probability is shown below:

(5)

Where Pi(t)=fit is the probablity that a bus of line i
arrives within t minutes and fi is the frequency of the i-
th line3.
Similar considerations apply to intermediate nodes.
The change time at a station v is the sum of a fixed
term4 and a probabilistic term dependent on the
availability of the means and on the schedules. Table 2

2 Eventually this feature can be disabled with an advanced interface option.
3 It may be worth to rememeber that the frequency is not constant
throughout the day, but may change according to real schedules.
4 It is the eventual time it takes the user to go on foot from the arrival place to the
departure place within the same node.

describes all the possible intra-node change times
combinations for node v (n is the next node).

Car Train Bus
Car 0 N.P. N.P.
Train PT(v) +

TrW(v, n)
TrWTr(v, n) TrW(v, n)

Bus PT(v) +
 BW(v, n)

BW(v, n) BWB(v,
n)

Foot PT(v) 0 0
Taxi PT(v) +

TaW(v)
TaW(v) TaW(v)

Metro PT(v) + MW MW MW

Foot Taxi Metro
Car N.P. N.P. N.P.
Train TrW(v, n) TrW(v, n) TrW(v, n)
Bus BW(v, n) BW(v, n) BW(v, n)
Foot 0 0 0
Taxi TaW(v) 0 TaW(v)
Metro MW MW 0

Legend:
N.P. Not Possible, because a user cannot take the
car at intermediate nodes;
PT is the Parking Time;
MW is the constant METRO_WAITING_TIME
TaW is the Taxi Waiting Time;
TrW & BW represent the waiting times for trains
and buses as computed before;
TrWTr & BWB represent the waiting times for
changes of homogenous means.

Table 2 Intra-node waiting times: in columns are the
previous means, in rows the next. Fixed change times are
omitted.

Traversing a node with the same means is not always a
0-cost operation. More precisely, this is true for means
that involve different lines, thus trains and buses in our
case study. For example, using the above notation, a
user could reach station v from another station w with
a bus line which does not continue to station n. In this
case the user has to stop at station v and wait for a bus
to station n. The problem is further complicated by the
fact that there may be other bus lines connecting w to
n through the node v and/or other different lines
connecting v to n. As a consequence, it must be taken
into account the probability the user takes each line of
a bus/train connection. So, for trains and buses we
have implemented two specific functions BWB(v, n)
and TrWTr(v, n), as specified below:

(6)

where Pr{v,n} is the probablity that the user arrives in
node v with a bus line that does not continue to n. This
last probability is obtainable from information
dynamically stored in each node, that records the lines
that the user coming from the previous node may take
and the corresponding probabilities.
In all cases, we suppose that the system does not know
buses, metro nor trains schedules (i.e. it knows only
the frequencies of the services). This is realistic in
many cases (e.g. the local bus company provides only
frequencies, not precise schedules, or an user could
arrive at a station without knowing the trains departure
time), but may also be arbitrary (e.g. in a low-
frequency line, users usually know the precise
schedules of the trains or of the buses). Currently users
can disable the intra-node change times option for the
starting node or for all the nodes. However further
better solutions could be studied to overcome this
problem, probably by giving users some finer control
over the computational process.

4. Results and conclusions
In order to validate our algorithm we run the program
on different platforms and registered the performance
in terms of time spent to get the final result. Table 2
shows the avarage results we got by running the server
program within the jdk1.1 VM on a workstation Ultra
Sparc1 140MHz with 64 Mbyte of memory and within
the jdk1.2 VM on a PC Windows NT with 32 Mbyte
of memory and a 200 MHz cpu. On the Sun platform
we have also tried a native compiled version of the
Java program, using Toba[10].

Platform-Execution method

MEANS Ultra Sparc1-Interpreted code

1 zone 3 zones 5 zones

Bus 0,59 1.66 2.4

Bus & train 0.6 1.75 2.6

Car 0.45 1.25 1.71

Tax, car and foot 0.6 2.47 3.96

All 0.81 3.85 6.15

Ultra Sparc1-Compiled code

Bus 0.58 1.78 2.77

Bus & train 0.67 2.06 3.31

Car 0.38 1.09 1.69

Tax, car and foot 0.57 2.54 4.44

All 0.86 4.61 7.75

NT-PC-Interpreted code

Bus 0.58 1.78 2.77

Bus & train 0.67 2.06 3.31

Car 0.38 1.09 1.69

Tax, car and foot 0.57 2.54 4.44

All 0.86 4.61 7.75

Table 3 Execution time in seconds.

We developed the tests by varying the number of
zones involved in the simulation and by varying
the pool of selected means of transport, as shown
in Table 3.
Further work may be spent to address the problem
of how to reach many target points in the city in
minimum time (travelling salesman problem).

References

[1] C.Mangione Just in Time for Java vs. C++, NC
World January 1998 available at
http://www.idg.net/idg_frames/english/content.cgi?vc
=docid_9-34575.html
[2] R.N.Horspool, J.Corless Tailored Compression of
Java Class Files, Software-Practice and Experience,
Vol.28, No.12, 1998, pp. 1253-1268.
[3] B. Venners Inside the Java Virtual Machine,
McGraw Hill, New York, NY, 1998.
[4] K. Arnold,J. Gosling The Java Programming
language, Addison-Wesley, 1997
[5] T.Lindholm, F.Yellin The Java virtual Machine
specification, Addison-Wesley, 1997
[6] N.Christofides Graph Theory An Algorithmic
Approach., Academic Press, 1975
[7] Linee Urbane AMT-FS Orari-Frequenze e Tariffe.
Edizione 1998-1999
[8] E.W.Dijkstra A note on two problems in
connection with graphs. Numerishe Mathematik,
Vol.1, 1959, pp. 269-271
[9] Pearl, J. Heuristics: Intelligent Search Strategies for
Computer Problem Solving. Addison-Wesley, Reading,
MA, 1984
[10] T.A. Proebsting, G. Townsend, P.Bridges, J.H.
Hartman, T. Newsham and S.A. Watterson. Toba: Java
for applications – a way ahead of time (WAT)
compiler. In Proceedings of the 3rd Conference on
Object-Oriented Technologies and Systems, 1997.

