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Abstract: - New models, called Poisson-Laguerre and E-Kautz models, are obtained by a re-parameterization of
the so called Laguerre and Kautz series. The truncation error is conserved. The quantification of this error is
possible by using the orthogonality property of Laguerre and Kautz functions. The state space representations
are also given and compared. The particular structure of these new models is more suitable in computation, it
allows particularly an analytic computation of the corresponding zero order hold discrete-time state space
representation; that of Laguerre and Kautz models are also deduced.
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1   Introduction
Several papers have used Laguerre and Kautz series
to approximate complex systems, namely infinite
dimensional, time-delay and resonant systems [2],
[5] and [8]-[11]. They have been found useful in
the model order reduction. The property of being
orthogonal allows the quantification of the
truncation error.
    Laguerre models give an excellent low-order
approximation of a well-damped system, [9] and
[8]. The Kautz functions are useful to cope with
resonant systems [8] and [10]-[12].
    Essentially the discrete-time version of these
models has been used in system identification. One
of our motivations in this work is to be able to
identify the parameters of a continuous-time model
in online way.
    The use of Laguerre models for this objective
has been proposed in [3]. It is based on the
discretization of the state space representation,
obtained from the expansion in Laguerre series of
the system transfer function. The trapezoidal
approximation has been used to compute the
matrices of the zero order hold discrete-time
representation. In this paper, an analytic value of
these matrices is computed for the new models,
called Poisson-Laguerre and E-Kautz models,
thanks to their particular form. The corresponding
matrices of Laguerre and Kautz models are
deduced.

Markov models have also been used in system
identification of continuous-time models in [7]. The
main problems encountered with this method are
the high approximation order of the model which
induces a large number of parameters to identify
and the numerical sensitivity problems of the
identification algorithms due to the fact that the
data vector contains the input signals and their
integrals. To deal with this problems, the authors
have modified, in an empirical way, the Markov

operators }s/1{ i  as })]s/({[ iλ+β , where s is the

Laplace operator, β(real) > 0 and λ(real) > 0. In this
paper, we show that the model based on this latter
operators can be obtained by carrying out a
transformation on the Laguerre model. This new
model have the advantage of preserving the same
truncation error as Laguerre series.
The same remarks remain valid in the case of Kautz
and E-Kautz models.
    The parameters of Poisson-Laguerre and E-
Kautz continuous-time models can be identified in
an online way via their zero order hold discrete-
time state space representation. This makes their
use in adaptive control of continuous-time systems
attractive
    The paper is organised as follows: in Section 2,
the Poisson-Laguerre models and their continuous-
time and  zero order hold discrete-time state space
representations are presented. The Section 3 deals
with the E-Kautz models. The concluding remarks
are given in Section 4.
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2 Poisson-Laguerre Models
2.1   Laguerre functions
The orthonormal Laguerre functions, with respect
to the standard time domain L2 inner product, are
given by the following equation
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where λ (real) > 0.
The Laplace transform of {ON(t)} are orthonormal
rational functions {Lk(s)} given by
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2.2   Poisson pulse functions [6]
The classical Poisson pulse functions are defined as
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where λ(real) > 0.
The Laplace transform of pk(t) is given by

kk
)s(

1
)s(

λ+
=π (4)

2.3   Poisson-Laguerre series
A stable transfer function G(s) can be developed as
a Laguerre series [9]
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where {αk} are the Laguerre coefficients.
The kth  order Laguerre function Lk(s) can be
decomposed in terms of {πi(s), i = 1, ...,k}  functions
as
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The substitution of (6) in (5) gives
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Therefore, truncate the series (5) at a certain order
n amounts to truncate (7) and (8) at the same order
n. This means also that these two series, (5) and (7),
have the same truncation error. The relationship
between the Laguerre coefficients {αk} and those
of the series (7), {gk}, is given by
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The non-orthogonal series (7) is called Poisson-
Laguerre series. To approximate a stable transfer
function by one of this series, they should be
truncated at a certain approximation order n. Low
values of n are obtained when λ is chosen close to
the dominating pole of the system [8]. Some
methods to compute an optimum λ can be found in
[1] and [4].
    When λ is chosen close to zero, the Poisson-
Laguerre series becomes close to Markov series
[7].

2.4   State space representations

Let






=

+=

x(t)C  y(t)

Bu(t)Ax(t)(t)x
T

�

(13)

be the single input single output state space
representation of the system described by
truncating the series (5) and (7), where
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respectively the state vector, the output and the
input signals.

The parameters of (13) with respect to each
expansion are given in table1.
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              Table 1:  Comparison of Laguerre and Poisson-Laguerre state space representations.

One can check that the Poisson-Laguerre and
Laguerre state space representations are linked by
the relationship
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Note that the matrix Γ(λ) is upper triangular with
non-zero diagonal entries and thus invertible.
Since the matrices A and B are known, an online
identification of the unknown parameters vector C
of the continuous-time models can be performed by
using the zero order hold discrete-time version of
(13), say
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In the case of Poisson-Laguerre models, it can
easily be shown that
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and Ts is the sampling time interval.
The analytic value of the zero order hold discrete-
time state space representation matrices of
Laguerre models is deduced as follows
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Thus, the trapezoidal approximation used in [3] is
avoided.

3 E-Kautz Models
The so-called (orthogonal) Kautz functions are
given by
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where p(real) > 0 and q(real) > 0, [9]-[12]
The transfer function of a resonant system can be
approximated by a Kautz series as
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where n is the approximation order and }{ kα are
the Kautz parameters. A low approximation order
can be obtained by choosing p and q so that the

roots of 0qpss2 =++  are close to the complex
poles of the system to be approximated.
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Without loss of generality, we consider n = 2m
(even). Then, taking into account of (22) in (20)
and substituting in (21) lead to
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One can remark that Equation (23) looks like
Laguerre expansion described by Equations (5) and
(2) with respect to the variable ζ.
    In the same way as in §2.3, Equation (23) can be
transformed as
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and the matrix Γ(p) is obtained by replacing λ by p
in Γ(λ ), given in Equation (11).

The substitution of (27), (26) and (22) in (25) leads
to
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We can then notice that the series (28)-(29) have
the same truncation error as Kautz series. They can
be considered as equivalent and the model
described by (28)-(29) is called E-Kautz model, E-
means Equivalent to.
    The state space representation based on Kautz
and E-Kautz models can be written as
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I2m and 0 are 2m×2m identity and zero matrices.
The parameters of (33) are given in table2.
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One can check that E-Kautz and Kautz state space
representations are linked by the relationship
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Note that the matrix Λ(p,q) is upper triangular with
non zero diagonal entries and thus invertible.
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be the zero order hold discrete-time version of (33).
In the case of E-Kautz models and using the fact
that  ])AsI[(e 11At −− −=/ , where (*)1−/ indicates
the inverse Laplace Transform, one can show that
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The analytic value of the zero order hold discrete-
time state space representation matrices of Kautz
models is deduced as follows
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To obtain these matrices directly from Kautz
matrices, given in the first column of table 2, seems
to be less obvious.

4 Conclusions
New models, called Poisson-Laguerre and E-Kautz
models, have been deduced respectively from
Laguerre and Kautz series. The truncation error is
conserved. It could be quantified by using the
orthogonality property of Laguerre and Kautz
series, via Equations (9) and (25).
    As can be observed in table 1 and 2, the
particular form of the state space representation
obtained with Poisson-Laguerre and E-Kautz
models is more suitable in computation. It allows
particularly an analytic computation of their zero
order hold discrete-time state space representation.
The corresponding analytic expression of Laguerre
and Kautz models is easily deduced from that of
Poisson-Laguerre and E-Kautz models; this seems
to be less obvious directly from Laguerre and
Kautz continuous-time state space representation.
    An online identification of the unknown
parameter vectors g and g  of the continuous-time
models could be achieved by using the zero order
hold discrete-time state space representations, for
which these vectors remain the same
    Poisson-Laguerre and E-Kautz models have been
tested, in simulation, by identifying in online way a
variety of continuous-time systems, namely time-
delay, infinite-dimensional and resonant systems.

Reasonably low approximation orders are used. A
fast convergence rate of the recursive last squares
algorithm is observed. These models appears thus
to be particularly suitable for adaptive control of
continuous-time systems.
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