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Abstract : The problem of the Robust Stability of Schur Polynomials is investigated.
Recently, a new approach based on Rouche's theorem of the classical complex analysis has
been adopted for the solution of this problem. In this paper, an improvement of this
solution is presented. This is the optimum solution of the Robust Stability problem of
Schur Polynomials and is obtained by solving a minimization problem. and it is better than
all the other methods in the robust stability literature.

I. INTRODUCTION
In linear, time invariant (LTI), discrete time systems we must be interested not only

in whether the polynomial (system) is stable but also whether the polynomial (system) will
remain stable in the presence of system parameter deviations. This is the problem of the
robust stability. Over the last two decades, this problem has attracted much attention by
scientists and engineers working in the area of analysis, synthesis, simulation, reduction,
modelling of physical and artificial systems.

One of the basic robustness problems was to determine the robust stability of a given
family of characteristic polynomials. The most notable result is Kharitonov's theorem and
its various genaralizations [1]÷[7]. According to Kharitonov's theorem, a whole class of
polynomials is stable if and only if four special, well-defined polynomials are stable. In
other words, the problem of robust stability of the polynomial is reduced to the problem of
the stability of a whole family of polynomials which is further examined by considering the
stability of four "corner" polynomials of the family. So, the problem is solved by examing
only four polynomials with respect the stabilty.  Many recent elegant results of the
literature concerning the robustness of  LTI, (discrete time or continuous time) systems
can be found in the book of Barmish [13].

In [8], [9], [12] and [13], a different robust stability problem is stated and discussed.
This problem could be called as the inverse Kharitonov's problem since here the starting
point is only the particular given polynomial instead of a family of many polynomials.

A simple formulation of this problem in the case of LTI, discrete time systems is as
follows, [12].
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 with β α αi i iR R∈ − +,b g, i n= 0 1, ,...,  to be Schur stable.

In this paper, we find a better result than those in the literature, [1]÷[9], [12], [13].
To this end we use Rouche's theorem, [10].

Rouche's theorem: If the two functions f zb g and g zb g are analytic in a region G and
if

g z f z f zb g b g b g− <                                                  (1)

holds at every point z of the boundary ∂ G of G, then the two functions f zb g and g zb g
have the same numbers of zeros in G.

We will consider as f zb g the original given polynomial and ∆f z g z f zb g b g b g= −

the perturbation under which the new polynomial g zb g is obtained from f zb g. Here, the
main result is derived in Section II where we achieve a better (bigger) radius of stability
than in [12] as well as a more convenient result than the relevant results of [13].
Furthermore, in Section III, three illustrative examples support the obtained result.

II. ANALYSIS
Consider the Schur stable polynomial f(z)

ƒ = ⋅
=
∑z zi
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              with α i z ∈   R,  ∈ C (2)

the robust stability of which is examined under variation of the (real) coefficients ai . The
polynomial

∆ ∆ƒ = ⋅
=
∑z a zi
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              with ∆a zi  ∈   R ,  ∈ C (3)

represents the "perturbated" f zb g. The problem in question is to determine necessary

conditions under which g zb g (where g zb g= +f z f zb g b g∆  ) is also Schur stable. For this

reason, (1) is rewritten as ∆f z f zb g b g<  or

∆f z f zb g b g
2 2

<                                                 (4)

At this point, one could notice that this method can be also applied for LTI, continuous
time systems too since, it is known one can assume that ∂ G is the unit circle since this is
always possible via an appropriate conformal mapping (Riemann's theorem, [10]). In the
case of the transition of the continuous time to the discrete time system this is achieved via
a bilinear transformation.
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     In (4), we substitute  z ej=        ≤ ≤θ θ π, 0 2 .       Then after some algebraic
manipulation one finds
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So, if one uses the usual trigonometrical relation

cos cos cos cos cos ...j
j j j j jj j j jθ θ θ θ θb g b g b g b g b g= − +
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j N= 1 1,...,
then c can be written as a multiplication of one rectangular matrix T with the vector x as
follows.

            c T x= ⋅ (6)

where x t Nx x x=         1 2 1
L  with x = cosθ . Matrix T depends on the "length" of c. As an

example, for N1 5= , (6) is written as
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Substituting (5.1) and (5.2) into (4) and using (6) one finally obtains the relation
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where one verifies that the difference F a a xn∆ ∆1 ,..., ,b g is a polynomial in n+1 variables

∆ ∆a a xn1 ,..., , .  Considering now that

∆a Ri <                 i n= 0 1, ,...,                           (9)

the problem in question is to find the optimum R for which (8) holds and consequently the
polynomial in (2) remains stable under the considered coefficients' deviation. Now, (8)
yields
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For R=0 , (10) holds for any x with − ≤ ≤1 1x   since f(z) is Schur stable. The supremum

R2  for which (10) holds for every  x (− ≤ ≤1 1x )  is the minimum value of the fraction:
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Therefore the supremum of R2, and consequently the supremum of R, is found by the
following one-variable minimization problem

minimize a x

over x

x

          
 

− ≤ ≤

b g

b g1 1

                                                             (12)

If we denote the solution of the above minimization problem as a* , then the supremum of

R which will be denoted as R*  will be equal to a* .
     In (11), one should notice that the numerator of a(x) is positive for − ≤ ≤1 1x , since it

corresponds to f zb g which is a Schur stable polynomial. In additional, the denominator is

positive or 0 since it corresponds to the polynomial 1+ +z zn...  which has n roots on the
unit circle. Therefore a(x) is positive or +∞ for − ≤ ≤1 1x . Therefore the minimum of
a(x) over the closed interval [-1,1] is meaningful.
     Remark: Generalizing the above formulated problem one can give various weights to
the coefficients variations in a way to have

   ∆a Ri i< λ                 i n= 0 1, ,...,                           (13)

instead of (9).  In this case, after the usual algebraic manipulation,  we have to solve the
same problem
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One should note that these results are better, more elegant and simpler with respect the
computation than those in [13]. They are also an apparent improvement with respect to
the results of [12].

III.  NUMERICAL EXAMPLES
To compare the results with the results of [12], the same examples are examined. Also

λ i i n=    ∀ =1 0 1, ,...,  .

(i) Consider the polynomial f z z z z zb g b gb g= − − = − +2 3 5 62 . We have to find the "radius"

R such that all the polynomials g zb g with coefficients in the intervals (1-R,1+R), (-5-R,-
5+R), (6-R,6+R) to be Schur stable. Therefore, one has to solve the following one-variable
minimization problem

minimize a x

over x

x

          
 

− ≤ ≤

b g

b g1 1
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50 70 24

1 4 4

2

2
.  The above one-dimensional minimization problem is solved

numerically. So, one finds its minimum at x=1 and the minimum value is a* /= 4 9 which
yields R*=2/3=0.666.

Therefore the coefficients of the polynomial f z z zb g = − +2 5 6 i.e. 1,-5,6 can be
varied in the intervals (1-0.666,1+0.666), (-5-0.666,-5+0.666), (6-0.666,6+0.666) and the
resultant polynomial to be Schur stable. So, the supremum R* coincides with that in [12].

(ii) f z z z z j z j z z z zb g b gb gb gb g= − − + + + − = − − + +2 3 1 1 3 2 2 124 3 2 . Here, one

finds a x
x x x x

x x x x
b g = + − − +

− − + +
238 250 224 272 96

1 4 4 16 16

2 3 4

2 3 4
. The minimization of this fraction yields

a* /= 88 25 and  R*=1.8762. This is a "better" supremum R than that of [12] where one
had R*=1.513

(iii)  f z z j z j z z z zb g b gb gb g= − + + = + + +3 3 3 3 9 273 2 . Here, we obtain that

a x
x x x

x x
b g = + + +

+
80 48 45 272 3

2 3
. Similarly one finds R*=10 which is a better evaluation of

R* than that of [12] where R*=  5.

IV.  CONCLUSION
In a recent publication, [12], a result concerning the problem of Schur polynomial

stability has been obtained. In this paper, an improvement of this result i.e. of the radius of
the robust stability is achieved. Since, in all steps of the procedure we actually have
necessary and sufficient conditions, it is obvious that the present evaluation of the radius R
is the optimum that can be achieved.  As the one-variable minimization problem of an
easily determined rational function is quite easy to be solved (even by plotting it over the
interval [-1,1]), our approach is better, more elegant and simpler with respect the
computation than those in [13]. Also, it is better than that of [12].

The extension of this result in the case of characteristic polynomial of continuous
systems is possible via the well known Möbious (bilinear) transformation.  In the robust
control theory, the above result may be a useful contribution.
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