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Abstract: -This paper consider the design of pseudo-linear feedback controllers for a single machine/infinite
bus power system in order to optimize the dynamic performance of the system, whether or not the system
operates under actuator saturation. The stability of such a system should be guaranteed for any small
disturbance to the system, and for any small deviations from normal operation. Two control inputs are
available and not al of the states are measured. The overal control system design is based on a new anti-
windup controller synthesis method, developed by the authors. The resulting control system can compensate
exciter and turbine saturation in short time intervals and provides good system performance. The performance

of the overall system is studied in simulation.
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1 Introduction

The dynamic stability of a synchronous electric
generator connected to an infinite bus through a
transmission line has been investigated in great
detail [1], [2], [3] (and their references).

In such a system, load disturbances, self excited
oscillations and other phenomena, which perturb the
system from its normal operation, can drive the
system actuators into undesirable saturation. As will
be shown, this is true, even when the system
operates under relatively small variations of its
dynamics.

So far the majority of controller designs am to
limit the feedback control action in such a way that
saturation is unlikely to occur. For example, power
system stabilizers put limits on voltage feedback
signals in order to avoid exciter saturation [4]. In
linear quadratic regulator (LQR) and H, designs, the
weight selections are made in such a way that the
control signal does not cause saturation. The above
strategy may give reasonable designs in terms of
saturation avoidance but in some cases it will limit
the system performance.

This paper considers the design of an anti-windup
control system, for a synchronous electric generator,
connected to an infinite bus through a transmission
line power system. A new design method [5] is used.

The structure of this paper is as follows. The
system model and design specifications are
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described in section 2. The control system design
method and its application are summarised in
section 3. Simulations of the designed control
system and a discussion of results are given in
section 4 along with a comparison with an H;
design. Conclusions are given in section 5.

2 Single Machine/Infinite Bus Power

System
In this section, a description of the system under
study is given together with numerical data and
design specifications. For more detail see [1], [2],
(31, [4], [6] and [7].

2.1 System Description and Modeling
Essentially, the control of the steady state normal
operation of a synchronous electric generator
connected to an infinite bus through a transmission
line (see Fig.1l) is implemented with two major
control loops. an automatic voltage regulator (AVR)
and an automatic load-frequency controller (ALFC)
[2], [3]. A power system transfer function block
diagram is shown with these two loops in Fig.2 and
from now on it will be referred to as the open loop
system. Useful nomenclature is given in Table 1 of
section 2.2.
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Fig.2 Power system block diagram.

To improve the dynamic performance of the
system in Fig.2, the control inputs Au; and Zu, are
used. Aup isan input to the exciter of the AVR loop,
while Aus is an input to the speed governor of the
ALFC loop. Power system stabilizers are not
included in our study.

We assume that the system operates under small
dynamic variation. A linear mathematical model (in
the time-domain) including saturation nonlinearities
on the exciter [6] and turbine [7], can be obtained as:

o (Mxt),= Ao(Ax(t))+Bault )+ AT &) (D)
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The constants K; to Kg can be calculated from
formulas in terms of the system numerical data and
normal point of operation [1].

Ingeneral Aa:=o - o° denotes the deviation of o

from its normal value of operation 0°, and o (40)
denotes the radia elipsoidal saturation function of
Ao given by (11):

Aomax Zoc 2 Aomax

o(Ao =140 domin < Ao< damax (1)
Aocmin Ao < Aomin

Since (11) is a nonlinear function, it may be

argued that system (1)-(2) is also nonlinear despite

its linear structure. For this reason, systems of this
type will be referred to as ‘ pseudo-linear’.



From (5) it is apparent that full state information
of the system is not available in our study. Hence
this work may be useful for cases where some of the
system states are difficult to be measured for various
reasons. Furthermore, the presence of a load
disturbance AT and a measurement disturbance

Awo are taken account into the system formulation.

2.2 System Data and Specifications
The system data is taken from [8]:

Xg =103 pu  Xq =0.247 pu X =0.612 pu
Tgo =6.05 ¢ X =03 pu G =100

T =0.05 sec Tr =1sec Tg =0.1 sec
R =0.04 pu D=3 M =10 sec

The nomenclature is given in Table 1 below.

NOMENCLATURE
et Terminal Voltage R Regulation
Droop
E Infinite Bus voltage G Exciter Gain
Xe Series Transmission P Real Power
Line Reactance
X d-axis Synchronous Q Reactive Power
Reactance

X d d-axis Transient Te Electromagnetic

Reactance Torque
X q d-axis Synchronous 0 Rotor Angle
Reactance

T Speed Governor
Time Constant
Tt Turbine Time

Constant
T('jo Generator Field

@ Rotor Speed

Eq Generated Field
Voltage

Ty Prime Mover

Time Constant Torque
M Inertia Coefficient X g Steam Control
Vave
D Damping Coefficient E fg Excitation
Voltage
T Load Disturbance Wo Measurement
Disturbance

Table 1. System Nomenclature.

The normal steady state operating point is subject
to alagging power factor P 4+Qj =1.2 +0.4j pu and

atermina voltage 1 pu. With respect to the previous
values, K1 to Kg are computed as[1]:

K1 =10571 K, =13843 K3 =0.5997

K4 =1.0839 Kg=-01573 Kg =0.4723

Saturation of the exciter and the turbine steam
control valve can be expressed with functions
smilar to (11). More specifically, we have the
following limits:

Exciter
AE g max =1 pu, ZEfg min=-1pu (12
Turbine steam control valve
AX g max =0.01 pu, AX g min =-0.01 pu (13)
AXE max=0.1 pu, AXg min=-0.1 pu (14)
Finally, the measurement disturbance matrix is
I>=0.013. (15)

The above data specifies the numerical values of
the state space data (6)-(9). Hence the model (1)-(2)
is determined. Furthermore, the eigenvalues of the
open loop system are -10.7724 +8.0265j, 0.5390
16.5391j, -0.9461, -10.1626. Obvioudy, the open
loop system at the above operating condition is
unstable.

In the present study, the control problem is the
design of a control system to stabilize and optimize
the dynamic response of the open loop system,
under relatively small deviations of its normal
operation and under the action of small load
disturbances. The control system should be able to
handle saturation of the system exciter and turbine,
subject to (12)-(14), and to provide settling times of
1 to 2 sec approximately [3]. For the validity of (1),
(2), the system steady state and dynamic deviation
from its norma operation should aways be
relatively small.

3 Control System Design

In this section, the design of an anti-windup control
system for the power system in the previous section
is considered. A new design method developed by
the authors is used. This method can be applied to
various systems with saturation constraints on the
actuator dynamica model. The method is
summarised without proofs because of the limited
gpace. A detailed presentation of the design method
will be the subject of another paper [5].

3.1 Pseudo-linear Anti-windup Controllers
L et the controllable and observable plant be

oc(X)=Ac(x)+Bo U )+ qwy (16)
y=Co (x)+ Towy (17)



where xeR", ue KM, yeXP, w ek,

Wo € %2 are the state, control input, output, state
disturbance and output disturbance time variables of
the system, and A, B, C, Iy, Io ae the
associated state space data respectively.

o()) denotes a saturation function similar to (11).

The upper and lower saturation limits are denoted as

xt, x” for x, x*, x " for x andu*, u” for u.
For an unconstrained component, say v, of x, or X,

- .—}_ o= _ _|._
or u,itis X, =¢ and %, =-¢, or X, =¢ and

Xy1=-€,0r uh=¢ and uy; =-¢, respectively. e
is an adaptive parameter satisfying
kE::{sign(k)oo,k #0 _
0,k =0 ke,t =0
Furthermore, let the performance vector
¢:=E;x +Eou, where E;e R7", Ep eRkFM

7,720
and 7 +ke::{

are design matrices such that EI Eo> =0. For the

rest of the analysis the following assumptions should
hold.

Assumption 1: B isfull rank and I7 e Ker(BI )

where BI istheleftinverseof B.

Assumption 2: Saturation constraints are defined
with functions similar to (11), and only for:

a) The actuators outputs, states, and rate of
states.

b) Any state (not actuator state), which is
present in an actuator state space equation
(i.e. it is present in a differential eguation
(16), where a control input component is
present as well).

Our objective is to design a feedback controller,
for the plant (16), (17) such that the closed loop
systemis:

0] Asymptotically stable.

(i) Optimal in an H, sense.

A solution to the above problem can be obtained
with theorem 1, which constitutes the control design
problem.

Before we state theorem 1,
definitions are made.

T T
Ry := El E1, Ry = E2 Eo (18)

the following

V=Nl Vp:=Iary (19)

0 0
Note that Ry, V1 are positive semi-definite matrices
and Rp, Vo ae postive definite matrices.
Moreover R1, Ro can be viewed as weighting

matrices on the state and control input respectively.
ERI’I xNn

Ry:= [Rl o} (20)

Furthermore, define o, 0 € as
0jj :=0, if (xj1 and X1 : unconstrained) or (i # j)

(21)
0jj :=1,if (Xjg or Xj1: constrained) and (i = j)

(22)
0jj :=1,if (xj1 and Xj : unconstrained) or (i = j)

(23)

Gjj :=0, if (xjp or Xjp: constrained) or (i # j) (24)
Also, A:=A-BB'AG.

Finaly, let G e R, with saturation function similar
to (11) and upper and lower limits

T ::max(‘— BIAa‘x_,‘BIOﬂ‘X_.U_) (25)

xtut (26)
/
The saturation function of U apart from the
structure (11), can also be expressed as
3 0,0 RI<1
oli)= -1 (27)
(aT Raﬁa,aT RU >1

, IS positive-definite.

gt ::min(‘—BlAaxJ“, B

where Re %M>M

Theorem 1 ([5]): Let assumptions 1, 2 hold and
suppose that there exist semi-positive definite
matrices X,Y,Z € RN satisfying

ATX +XA-XBR,'BX +R; =0  (28)

AY +YAT —vcTv ley +vi=0  (29)
- \T -~
(A —YCTV2_1C) Z+2 (A —Ychz‘lc)
+XBR,1BX =0 (30)
Define
_[xX+z -z0 _ o n-laT
Q=" """ _,EC.=B,CC.=—R2 BT X,

Be == -YCTV, 1, Ac :=A +BC; -BC,

_ A BC.| - [B
A= , B:= ,C::[O CC].
BcC o Ac Ec_



Suppose that (K,ﬁl +CTR,C ) is observable, and
let the dynamic feedback controller structure be
given
%c =AcXe +Bey +E¢ (0U)-T) (3D
u=CcXc (32)
u=0()-B'Adc (X ), (33)
where o (x; ) has the same constraints as o (x ).
The result closed loop system is given by

o¥)=Ro )+ Blo@)-u)+ [T of w @3

y=[ O}o(i)+[1'; OTWz,YZ:[X XC]T.(34)

If the initial conditions X, = [Xg Xco ]T , of the

closed loop system (33), (34) satisfy

Xg Ko < Ao ETRég‘l)
(Amax (-} denotes the maximum eigenvalue of a
matrix), then the closed loop system is
asymptotically stable. Furthermore, the Ho-type
cost functional

J(Xg ):= J[XT RiX +u' Rou + 2% QB ([T —o [ ])]jt
0
is minimized, with a minimum equal to Yg Xq .

Remark 3.1.1: The controller (31)-(33) has a
pseudo-linear structure and hence the term ‘ pseudo-
linear anti-windup controller’. A block diagram of
the controller is shown in Fig.3.
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Fig.3 Pseudo-linear anti-windup controller block
diagram.

Remark 3.1.2: The set

¥ s {zo e %% :xd %, <;Lalax(6T RCQ 1 JJl
defines a subset of the domain of attraction of the
closed loop system. Since the theorem 1 provides
sufficient conditions for asymptotic stability, it is
possible that for initial conditions that do not belong

« M1
X~ _ at N
Yy —— AC‘BC ECV . |_|U O'[U/ + _u

in ¥, the closed loop system can be asymptoticaly
stable.

Remark 3.1.3: Equations (28)-(30) are identical
with those associated with the H, control problem.
Hence, an loop transfer recovery (LTR) process [9],
[10] can be posed in order to obtain certain
performance specifications, with the aid of state-
feedback design laws, such as LQR pole-placement
[11] and others. In this situation, the closed loop
system will in general not be optimal in an H, sense,

since Vi = 1‘11'1T +quBT (q=0), isused instead
of V1 in (19). Full-state LTR is possible for
minimum phase systems [9], which is the case in
this work. By selecting q we actualy compromise

between stability margins and  disturbance
attenuation.

3.2 Proposed Design Method

In order to meet the design specifications of
section 2.2, we make use of theorem 1 of the
previous section, with Ry and Ro as shown next.

It is obvious that (28) is associated with a state-
feedback LQR problem, in which the static feedback

controller gain is equal to C . Therefore we choose

the LQR optimal pole-placement method of [11], in
order to achieve the settling time of 1-2 sec, to
achieve reasonable damping in the dynamic system
response and reasonable stability margins. The
algorithm of [11], is used with respect to the system

(A,B) and with respect to a relative degree of
stability h =3, which corresponds approximately to
a settling time of 1 sec. Hence, the weighting matrix
R1 can beevauatedand Ro =1 .

After calculating Ry, R2, as above, we can apply

within theorem 1 a full-state LTR process, such asin
[9] and [10], in order to recover the state-feedback
performance and stability margins. As was stated in
remark 3.1.3, because our system is minimum phase,
full recovery may be feasible [9]. Because of this,
the closed loop system (33)-(34) will approximate
the dynamics of the static state-feedback closed loop
system. Therefore we expect the poles of the state-
feedback closed loop system, designed via the
algorithm in [11], to belong approximately to the set
of the eigenvalues of A.

Also, because of theorem 1 the overal control
system will be able to compensate actuator
saturation events and disturbances effects.



4 Controller Computation and

System Simulation
With respect to the system data in section 2.2, we
apply the proposed design method of section 3.2.
We assume the initial conditions
x0=0p1 0 -005 0 0005 07  (35)
and the disturbances
AT| (t)=step(0.01), Awo(t)=0357. (36)

Using the method of [11] with a degree of relative
stability h =3, we found that
Ri=
[ 04370 242502 05567 —03522 —00066 00029]
-242502 183047 —-379986 462783 29216 —-01979

05567 —379986 13129 -09066 —00530 00084
-03522 462783 -09066 130149 13970 —00047
-00066 29216 -00530 13970 01525 —00002
| 00029 -01979 00084 -00047 —-00002 000005
Ro =12. Moreover, selecting q =0, we have that
Vo =0.000113 and V1 =diag (0,0.01,0,000).
Applying theorem 1, the overal control system is
calculated.

The time simulation of the computed closed loop
system (33), (34), with respect to (35) and (36), is
shown in Fig.4. In the same figure, an H, design is
shown with the same design parameters as in
theorem 1.

It is apparent that under saturation, the H, design
gives an unstable system. Whereas, the new
controller based on theorem 1 manages to stabilize
the system well and eliminates the saturation effect
very quickly. The proposed method provides a
dynamic response with a settling time about 2 sec.
For the unsaturated components Je; and «, the
response of the system with saturation is almost
identical with the response assuming no saturation.
This is also true for the saturated components, after
the termination of the saturation event. This is
clearly not the case in the H, design. From the
above, we conclude that the new controller is able to
satisfy the specifications.

5 Conclusions

The design of a pseudo-linear anti-windup control
system has been presented for the power system in
Fig.1, under saturation of its actuators. It was shown
via simulations of the closed loop system that, the
proposed method satisfies the system specifications.
The designed control system appears to perform
very well in situations where saturation occurs. In

cases without saturation, the performance is better
than the cases with saturation. The proofs of the
theoretical results were omitted but they will
reported in more detail in another paper [5].
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Fig.4 closed loop system simulation (solid line: with saturation, dote line: without saturation).
X(0)=[0.1 0 -005 0 0005 07,3 ], AT| (t =step(0.01), Awy(t)=03y.



