ON THE ABSENCE OF THE STATE
VARIABLES DISCONTINUITIES OF LTI SYSTEMS
IN THE PRESENCE OF SINGULAR INPUTS
N.E. Mastorakis*

* Military Institutions of University Education (MIUE), Hellenic
Naval Academy, Chair of Computer Science, Terma Hatzikyri-
akou, 18539, Piraeus, Greece; e-mail: mastor@ieee.org

Abstract

This paper investigates the problem of the absence of the state vari-
ables discontinuities of a linear time-invariant (LTI) system in the
presence of singular inputs. Necessary and sufficient conditions are
given for this absence of state variables discontinuities. These condi
tions may be useful for many practical problems. An attempt is also
made to find a general solution to the above problem. Numerical
examples illustrate the theoretical results.

1. Introduction

Finite linear combinations of Dirac unit impulses and their
generalized derivatives are often called singular functions.
They are not functions in the ordinary sense, but they can
be manipulated (e.g., shifted, differentiated, integrated)
in a way similar to that in which other time signals are
manipulated. The operation of adding two singular signals
is also well defined, whereas in general the product is not.

In systems theory, a system is defined as an algorithm
(or equivalently, a signal transducer) that transforms an
input function (signal) into an output function (signal).

In this paper, we are dealing with input signals that
may be represented in the form of a sum of a regular func-
tion (i.e., ordinary functions that have right and left limits
at each point) and a singular function. OQur objective is
to investigate the following problem: when do singular in-
puts of an LTI system not cause discontinuities in state
variables? This problem was stated for the first time by
Novak [1], in whose work find necessary and sufficients
conditions involving eigenvalues and eigenvectors of the
companion matrix. These conditions are of practical in-
terest, as we will see in Section 2. In Section 3 we attempt
to find the general solution of the above problem.

With these ends in view, we consider the linear time-
invariant (LTI) system given by the following vector equa-

tion:

&= A-z+b(t) u(t)+Fo-6()+ 51 -6V +... 45, .5('>((tg
1

with:

.’L‘(O_) =29 (2)

where z is a state n-vector, zp is a constant n-vector, A
is a constant n x n matrix, b(t) is a continuous n-vector
function, B3,,0:,...,0, are constant n-vectors, and u(t),
6(t) and 6(*)(t) are the Heaviside unit step function, the
Dirac unit impulse (delta) function, and the k—th deriva-
tive of §(¢) respectively. Henceforward, we call the matrix
A the companion matrix of the LTI system described by
(D).

It has been shown [1] that:
20N)=2(07)+ A"+ ...+ AB + 1 (3)

Therefore, the necessary and sufficient condition for the
equality 2(0%) = z(0~) to hold in the nontrivial case (i.e.,
when at least one of the constants Bo, .., B, is different
from the zero vector) is:

A'Bi+...+ AR+ 18, =0 4)

where I 'isthe nx n Identity matrix. In the next section,
sufficient and necessary conditions for equation (4) to hold
are presented.

2. Main Results
We start by re-writing (4) as follows:

b,D' + ...+ 5D+ b =0 (5)

where b, = T , ..., by = BT and D = AT where the su-
perscript T denotes the transpose matrix. We then prove
the following theorem.

Theorem 1. D is a solution of (5) if and only if all
the simple (usual) eigenvectors z of D (corresponding to a
simple or a multiple eigenvalue A of (D), fulfil the relation:

(bsA*+ ...+ b1 A +b6) - 2=0 (6a)

as well as the generalized eigenvectors z,,...,z, of D, cor-
responding to a multiple eigenvalue A (of D), fulfil the
relation:



4 b+ bo)|

d)\J n=xc 2y =0

ol (M +
ZI(

with k = 1,...,p. In (7), zo is defined to be the simple
eigenvector of D from which the generalized eigenvectors
zy,...,Zp have been produced via the relation 4 - z; =
Az +2L'k_1(k = 1,..‘p).

Proof: Before proceeding to the proof of this theo-
rem, note that the eigenvalues of a matrix D are found by
the equation det(D — M) = 0. The simple roots of the
polynomial det(D — AI) are called simple eigenvalues of
D, whereas the multiple roots of the same polynomial are
called multiple eigenvalues of D. For a simple eigenvalue
A, one finds a simple eigenvector of D via the relation:
D -z = Xz, whereas for a multiple eigenvalue A (with m
multiplicity) one may find m; simple eigenvectors via the
relation: D-z=X-z, (where m; <m)and p=m-—m
generalized eigenvectors via the recursive relation: D -z =
A zi+zx_; where zg is one of the m; simple eigenvectors.

Now we are ready to prove the theorem.

Necessary: Suppose that (5) holds. Then, if z is a
simple eigenvector of D corresponding to the eigenvalue A,
we have D'z = Az (i = 0,...,s). Multiplying both sides
of (5) by z, one obtains (6). A generalized eigenvector of
order k corresponding to an m-tuple eigenvalue is defined
by the relations:

Dz = Azg

Dzy = Az + Tk

where k = 1,...,p. From the above equations, one can
find:
; 17\
Dz = Z] Y [Ay=x - Tk-j (8)

For example: D%z3 = ASz5+5A%z; +10A3z0. Multiplying
both sides of (5) by =} one obtains:

k .
1 d&/)? 1d7)}
20;- -’ M=AThe—j o by z% 'dA’l [xy=x * Ze—j+
= j=
t1d
E— I)\,-A ;=0 (s}
0 Id/\J

from which equation (7) follows directly.
Sufficient: Suppose that (6) and (7) hold. Then:

(b,D* +...+ b, D+bol)-z=0 (10)

where z is a simple or a generalized eigenvector of D. Be-
cause we have n independent eigenvectors z (simple or
generalized), it follows that:

b,D*+...+b5,D+b,I =0 (11)

QED

For some practical problems, theorem 1 may be very
useful. Consider, for example, an LTI system of the form
(1) for which (4) does not hold. For such a system, the
particular singular input cause discontinuities in the state
variables.

The problem in question is to find another linear sys-
tem with the same poles but, in general, different zeros for
which, the same singular input cannot cause state vari-
ables discontinuities, that is, the companion matrix A; of
the new system satisfies (4). Equivalently, we seek for a
matrix D; (D, = AT) with the same eigenvalues as D,
but satisfying (5). To this end, we should use theorem 1.
The problem is reduced to one of finding new eigenvec-
tors (simple or generalized)—corresponding to the same
eigenvalues—that satisfy (6) and (7). One can write:

D=S.L.-S7! (12)

where L is the diagonal or Jordan form of D (D = AT)
and S is the matrix of the eigenvectors of D. Denoting by
S the matrix of the n new (desirable) eigenvectors that
satisfy (6) and (7), the matrix D; results as follows:

D=8 -L-S;! (13)
Combining (12) and (13) yields:
Ai=H'.A.H (14)

where: H = (ST)~! . ST. Therefore, the new system that
has the same poles as the original but different zeros, and
satisfies the condition (4) (i.e., it does not have state vari-
ables discontinuities if the input is the particular singular
function) described by:

& = Arz+b()u(t)+Bob()+B M) +. . +B,6M(t) (15)

In control theory, it is well known that we can change
the zeros of an LTI system, without changing the poles,
via an appropriate controller.

Ezample 1. Consider an LTI system with:

4=l ] #=[3] o= ]
w=a] #= 3]

One easily verifies that A does not satisfy condition
(4). For this system, the particular singular input causes
discontinuities in the state variables. The problem of find-
ing another linear system with the same poles but different



zeros, for which the condition (4) is satisfied, is dealt with
as follows:

First, we obtain that the matrix D = AT = [1 0]

11
has a double eigenvalue: A = 1 with one simple eigenvector
zg = [(1] and one generalized eigenvector z; = [i .Itis

desired to find other zy and z, eigenvectors (say, £o and
&,) for which (6) and (7) hold, that is:

(b3A3 + 5222 4 by X + b)) - 20 =0

and

(b3A3 4+ bA2 4+ by A + bo) - £1 + (3b3A% + 25X + 1) - 29 =0
bo = BT

two equations is: £g = [-1 ] and: £, = [_01] Hence:

where b3 = 87, ... One solution of the above

r r -1
_ o [-1 =1] 1 1] [-1 1] _
Di=5cL-5, ”[1 0]_0 1]_1 0] “[—1 0
and:
o [2 -1]
Av=Di =11 |

It is now easy to verify that the condition (4) is satisfied
with A; instead of A. Therefore, the new system that
satisfies the condition (4) is:

&= Arz+b(t) u(t)3-Bo8(t)+51 ~5(”(t)+ﬂz-6(2)(t)+ﬂs-6(3;(t)
(16

For this system the singular input cannot cause disconti-
nuities in the state variables.

3. The General Solution of Equation(4)

In this section, the following interesting general problem
is examined: given a generalized input-function, find the
systems for which this input does not cause discontinuities
in their state variables. The algebraic formulation of this
problem is: Find the general solution of (4) with respect
to the matrix A when By, 51, ..., B, are given.

To this end, equation (4) is written as:

X‘ﬂl++Xﬂl+Iﬂ0=0

To solve (17), we set:

(17)

X=T"1.Q.T (18)

where T is an unknown nonsingular matrix of order n and
Q is an arbitrary n x n matrix. (In a very special case,

2

1

|

Q can be considered as the diagonal or the Jordan form
of X). Introducing (18) into (17), we obtain the following
equation:

T (Q T-B+..4Q-T-Bi+T-Bo)=0 (19)
As det(T~1) # 0, we have:
QT -Bi+...4Q-T -$1+T-8,=0 (20)

. Equation (20) is a generalized Lyapunov equation
with respect to 7. Furthermore, it is easy to verify that
(20) is equivalent to:

@ @8T+...+QepT +10p7)-t=0 (21
where: t = [t; tin i1 tan tn1

t;j is the ij—element of T, and ® denotes the usual Kro-
necker matrix product.

Defining:
G=Q'@8 +..+QepT +I108T (22
we write equation (21) as:
G-t=0 (23)

where G is an n x n? matrix and ¢ is an n? x 1 vector. T
is fully determined by finding t.
Therefore, the (general) solution of (17) is: X = T-1.
Q - T for every T resulting from (23) for which detT # 0.
Furthermore, let us define the n x n matrices,
Gy, -..,Gy by splitting G as:

G:[Glf...fGn] (24)
and introduce the notation:
) T
t:[t?:...:t{] (25)
i th1
where: t; = yeen by = . Using this notation,
tln tnn

(23) is written as:

G1t1+...+Gntn:0 (26)

The following two theorems provide necessary and suf-
ficient conditions for det T' = 0, for every T that is a solu-
tion of (20).

tan]”,



Theorem 2. For the matrix G given in (24), suppose
that det G; # 0, for at least oned,i=1,... n. Ifthenxn
matrices Gy, ...,G, are dependent on each other, that is,

010.’ '-=C!,~Gl y e

) ai—IGi = aiGi—l ’

ai41G; = a;Giyy, ..., anGi = ;G

then every solution T of (20) is a singular matrix.

Proof. Suppose that (27) holds. Then from (26), one
obtains that: o1G;t; + ...+ a,Gt, =0 or G.'(Ctltl +...+
ant,) = 0. Because det G; # 0, one has: a3 + ...+
apt, = 0. Therefore t;,...,1, are linearly dependent, and
T is singular.

QED

Note that if the condition det G; # 0 for at least one
i, 1 = 1,...,n , then by virtue of (27), it follows that
detG; #0foralli,i=1,...,n.

The inverse of the above theorem could be formulated
as follows.

Theorem 3. For the matrix G given in (24), suppose
that det G # 0, for at least one i, : = 1,...,n. If every
solution T of (20) is a singular matrix, that is a1t +...+
antl, = 0 with a; # 0 then equation (27) holds, that is:

oGy = oGy, ..., @i1Gi = oGy,
ai41Gi = @iGig1, ..., anGi = oG,
Proof, It is assumed that:
alt1+...+ant,.:O, a,-;éo (28)

foronei (i=1,...,n). From (26) it follows that:

ti = -G7'Giti—. .. —G7'Gic1tio1 =G ' Gig1 i1 =G Gty

(29)
Combining (28) and (29) yields:

(ay I - a,-G,TlGl)tl +...+ (05_11 - a;G,—_IGg_1)t"_1+

+(a,~+11—-a.-G,-_1G,'+1)t.-+1 +.. .+((¥nI—Q/,'G.-_1Gn)t" =0

where I is the identity matrix. As ¢; # 0, one can sets
Uy .. o1, tig1, By, in (28), as arbitrary vectors (linearly
independent). Therefore, (30) renders:

ay ] —a.'G.-'lGl =0, ..., a;_11- a,'G;’lGl =0,

(1','+11 - OV,'G‘_IGI = 0, ey Onl -Of.'G'-_IGn =0

Thus, we obtain (27) as required. QED

Ezample 2. Consider again the system of Example 1
and assume that A is not given. We seek an A satisfying
the equation:

A3B3+ A%y + AL+ 100 =0

or, using the previous notation:

X3Bs+ X2+ XP1+ 1B =0

Introducing (18) and following the previous analysis,
one finds:

[QPRb+ Q@b+ Qb1+ 1®be)-t=0

Now, setting:

one finds:
([(1) ﬂ@[—l 0]+[(1) ﬂ@[l 2]+[(1] i]®[0 0]+

ofo et s1) =]

t11

5 5 —1 4] |[t12| _ 10 .,_55]
or [0 0 5 5]- for —[0].Hence. 61—[0 ol

ta2

Clearly, the 2 x 2 matrices G and G are not depen-
dent on each other (theorem 2). So, a solution for which
detT# 0 holds is the following:

t11 =0, ti2=1,1 =1, tpp = -1

|0 1 11 ]
Thus.T_[1 _1] and T _[1 0] and:

- 2 -1
A=T 1-Q-T[1 0]

Remark. One may notice that A = A; (of example
1). This result is expected, as @ is the Jordan form of
A; of example 1 and 77! = [i (1)] is the matrix of the
eigenvectors of A;. Starting with other matrices @), one
can find further solutions.



4. Conclusion

In this paper, the matrix equation derived in [1] was con-
sidered. Necessary and sufficient conditions for the validity
of this matrix equation were presented and its general so-
lution was provided. The results of the paper, which are
supported by two examples, are useful in circuits and sys-
tems analysis, as well as in control systems design, where
the problem of checking the absence of discontinuities in
state variables despite the presence of singular inputs plays
a dominant role. An interesting problem for future investi-
gation is to design an adaptive feedback control that guar-
antees that the system state variables remain continuous
even if the inputs are singular functions of time. Some
other recent relevant studies can be found in [2-7].
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