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Abstract

We propose a generalized Lagrangian capable of describing in an unifyingmode di�erent non-
linear dynamical systems and wavelets; Korteweg-de Vries (KdV) solitons, K(2,2) compactons
andMorlet continuous wavelets. A procedure to associate for any discrete wavelet, that is for any
multi-scale �nite-di�erence equation, the corresponding Lagrangian and algebraic structure, is
given. We focus upon introduction of a nonlinear wavelet-like basis made by localized analytical
nonlinear solutions. A dimentional wavelet analysis that provide a qualitative relation between
the amplitude, width and velocity of the traveling solutions of certain nonlinear equations is
introduced.
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1 Introduction

Nonlinear science, though relatively new and far

less understood is an important frontier for prob-

ing fundamentals of Nature. Intense research has

developed world-wide in the mathematics and

physics of nonlinear dynamical systems [1] occur-

ing in di�erent �elds like 
uid dynamics, plasma

physics and quantum optics through string the-

ory. Among other, nonlinear physics presents a

variety of patterns [2] and particle-like traveling

waves [3]. Notable examples include dynamics

of solitons or breathers [3], nonlinear molecular

and solid state physics and nonlinear optics, [1,

4-7].

Traditional nonlinear models base on speci�c

nonlinear partial di�erential equations (NPDE)

and, contrary to the linear systems exhibiting

smooth regular motions, NPDE show strong in-

teraction between initial conditions and dynam-

ics or couplings between di�erent parts of the

system. Also, nonlinear interactions involve many

scales [8], and produce self-similar or fractal pat-

terns [2]. The NPDE solutions of physical inter-

est are usually localized and have good stability

in time and through scattering each other (ful-

�lling local conservation laws). Their shapes are

related to the velocity, thus making the nonlin-

ear patterns distinctly observable from the lin-

ear cases. In the asymptotic range these solu-

tions consist in izolated traveling pulses (soli-

tons, breathers, compactons [9], rotons [10, 11]),

free of interaction. Close to the scattering range,

the nonlinear solutions obey nonlinear superpo-

sition principles.

The main point in nonlinear analysis is the

construction of analytical, localized or �nite sup-

ported solutions for a given NPDE. This is still

an open question, especially because of this non-

linear superposition. Recent examples were found

where the traditional nonlinear tools (inverse scat-

tering, group symmetry, functional transform)

are inapplicable, [9]. On the other hand, from

the experimental point of view, one knows that

observed patterns in Nature, either stationary,

growing or propagating, are generaly of �nite

space-time extension and have amultiscale struc-

ture. Since the soliton and soliton-like solutions,

even localized, are basically of in�nite extent,

one needs adequate nonlinear and eventualy self-

similar bases in order to invetigate such struc-

tures.

One good support for this challenge is given

by the multiresolution analysis [12]. Traditional

tools, like the Fourier integrals or linear har-

monic analysis are ine�cient for nonlinear sys-

tems compared to wavelet systems. Wavelets

are analysing functions (bases) having the scale

space dependent. That is they are character-

ized by non-uniform scales, having thus the pos-

sibility of better local analysis at any scale, [12].

They have applications in signal processing, sin-

gular potentials in quantummechanics, q-algebras

and nuclear physics, [13], etc. The wavelet anal-

ysis of NPDE brings a new line since they can see

very steep variation, singularities together with

very smooth ones..

There are many physical premise favoring

wavelets in the construction of nonlinear bases.

For example the processes of breaking up of 
uid

drops was shown to be self-similar, the speci�c

singularities (the neck) look identical at any scale,

[14]. In the limit of separation this singularity

can still be expressed within the same basis.

Another example of interconnection between

the nonlinear features and the self-similar behav-

ior is provided by the welknown cnoidal solution

of the KdV equation. This solution can describe

some of the nonlinear oscillation and rotation

of a liquid drop, [10, 11], 
uid shell or bubble

modes, neutron star dynamics, spots in atmo-

sphere, etc. We plot in the farthest half of the

box, in Fig. 1, this cnoidal solution. In the range

s 2 (0; 1) in the �gure, the cnoidal wave (denoted
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cn(x; s)) depends on the space coordinate x and

the parameter s, running from 0 to 1. For s = 0

the cnoidal wave approaches a linear wave (cos

function) and in the limit s = 1 the cnoidal func-

tion approaches the soliton (hyperbolic cos func-

tion). In the closest half of the box (negative s)

we plot a continuous dilation of the cnoidal wave

in its cos limit, that is we keep s = 0 = constant

and just apply a dilation to this function. That

can be writen analyticaly as

u(x; s)

����
jxj�10

=

8<
:

cn2[x; s] s 2 [0; 1]

cn2[�x; 0] � = (1� s)1=6;

s 2 [0;�1];

where, for the sake of simplicity, we denoted by s

the dilation parameter, too. This picture shows

how the cnoidal nonlinear solution can be aprox-

imately constructed by similarity, in this case by

dilation, from its linear limit.

In this paper we introduce new wavlet in-

spired approaches in invetigation of NPDE lo-

calized solution. For that, we �rst construct a

generelized Lagrangian which yields a class of

NPDE allowing both compact supported solu-

tion (and in some limit approaching the KdV,

MKdV solitons) and continuous wavelet solutions.

We extend this approach in order to associate,

for any discrete wavelet, and for any multiscale

�nite-di�erence equation, the corresponding La-

grangian. Also some nonlinear algebraic struc-

ture. A dimensional wavelet analysis, that pro-

vide a qualitative relation between the ampli-

tude, width and velocity of the traveling solu-

tions of certain nonlinear equations is introduced,

too. Finaly, we introduce a nonlinear wavelet-

like basis made by localized analytical nonlinear

solutions.

The paper is organized as follows. In the

second section we introduce a Lagrangian which

generalize the KdV (MKdV) Lagrangian and the

compacton Lagrangian. We obtain a generalized

KdV equation which is later reduced to a new

equation with compact supported solutions, that

is K(n,m). In the third section we construct the

Hamiltonian system associated with any discrete

wavelet. In section four we use a reduction of the

NPDE to a simple algebraic realtion among the

parameters of the localized solution. We also

introduce a continuous wavelet basis based on

the compacton and dilated-compacton traveling

waves. In the �fth section we review the struc-

ture of wavelet systems and we give a general

method to construct wavelets with given sym-

metry.

2 The generalized Lagrangian

Observed patterns in nature - stationary or prop-

agating are usually of �nite extent. In this sec-

tion we introduce a generalized Lagrangian from

which we derive di�erent NPDE producing trav-

eling localised solutions. Namely, compact sup-

ported solitons, conventional non-compact soli-

tons, and wavelets.

By reducing the fx; tg variables of the solu-
tions to one traveling coordinate (x � V t), any

NPDE transforms into a nonlinear ordinary dif-

ferential equation (NODE). This one can be fur-

ther reduce into a �rst-order nonlinear di�eren-

tial system.

The generalization which we will study in

this section is described by the Lagrangian [15]

L =

Z
R

dx

�
1

2
'x't +

�

(p+ 1)(p+ 2)
('x)

p+2

��('x)m('xx)n + 


2
('x)

l('xx)
q('xxx)

r

�
; (1)

which includes extra terms with higher order deriva-

tives compared to the traditional non-relativistic

�eld theory Lagrangians [16]. Here p;m; n; l; p; q; r

and �; �; 
 are free parameters. After writing the

Hamilton equation, we make the functional sub-

stitution � = 'x(x; t). The �rst term in eq.(1)
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gives the dynamical structure of the resulting

equation, that is the time dependence. The sec-

ond term is the typical term, most involved in

nonlinear �eld equations [1,3-5, 7,9,10,15,17]. This

term generates the nonlinear couplings in the

corresponding NPDE. The next two terms in eq.(1)

are responsible for the dispersion. The balance

between the second term and the third (and higher)

terms controls the existence of localized solu-

tions.

We begin our investigation by studying the

simpler version of eq.(1), that is a Lagrangian

with only three terms, 
 = 0. The parameter

n is the most important one and controls the

di�erent cases. For n = 0; 1, the third term in

eq.(1) reduces to the second one or vanishes, re-

spectively. The corresponding equation does not

contain dispersion so it is not interesting for our

purposes. Its solutions are unstable in time, de-

caying or blowing up. For n = 2, L[p;m; n; l]

leads to a generalized sequence of KdV-like equa-

tion of the form

�t + ��p�x + �[2�m�xxx + 4m�m�1�x�xx

+m(m� 1)�m�2(�x)
3]; (2)

called the K(p+2,m) nonlinear equation. These

equations admit compact supported traveling so-

lutions, known as compactons [9,15,17]. The com-

pactons are trigonometric functions de�ned on a

half-period, and zero in the rest. In general, they

have the form Acosad(x� ct).

These compact waves have the remarkable

property that after colliding with other compactons

they reemerge with the same coherent shape. If

the initial data of the K(2,2) equation are com-

pact but not a compacton ( a dilated or com-

pressed version of it) the solution decomposes

into a number of compactons, Fig. 3. Hence, as

it was earlier suggested in [9], these solutions can

provide a nonlinear basis.

In the special case when 0 < m < 2 and

p = m, the solutions are compactons for which

the width is independent of the amplitude. This

is the fact which provides the connection with

wavelet bases. They are characterize by a unique

scale, and it is this feature which makes later pos-

sible the introduction of a nonlinear basis start-

ing from this "mother" function. For m = p = 1

the resulting equation

�t + �2(�2)x + 2�(�2)xxx � 8��x�xx = 0; (3)

is a generalized KdV equation with nonlinear dis-

persion (the third term in eq.(3)) and a supli-

mentar nonlinear term. A compacton solution

of eq.(3) is

� = �0cos
2

�p
�24�

�
x� �(�0 + 2�)3t

��
+ �; (4)

if jx�V tj < �
p
3�=�2 and zero in the rest. Here

� and �0 are free parameters and the velocity is

a function of the amplitude. We notice that the

width L =
p
24�=� of the wave is independent

of the amplitude. This equation has the same

terms and the same solution as the K(2,2) con-

sidered in [9]. Contrary to that one (which has

four independent invariants), eq.(3) has only one

integral invariant, the area of the solution. The

quadratic dispersion term is characteristic for the

nonlinear coupling in the chain.

The general solution of eq.(3) is not only the

cos function but a dilation of lenght l of the peak

value, Fig. 4 Although the second derivative of

this generalized compacton is discontinuous at

its edges and is still a strong solution of eq.(3)

because the third derivative acts on u2 which is

of class C3.

Form = 0 eq.(2) reduces to the class of mod-

i�ed KdV equations, MKdV.

�t + ��p�x + 2��xxx = 0 (5)

which are integrable for p = 1; 2 with soliton

traveling solutions, respectively

'x(x; t) �
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�(x� V t) =

8>><
>>:

�0sech
2

�p
24���0

�
x� ��03t

��
;

�0sech

�p
12���20

�
x� ��206t

��
; :

(6)

For p = 1; 2, respectively. For n > 2 the equa-

tions become too complex and their investiga-

tion beyond the aim of the present paper. More-

over, we have no knowledge of physical systems

described by the third power of the derivative

terms.

In the case when the last term in eq.(1) is

not any more neglected (
 6= 0) it was shown

that compacton solutions occur only if p = m =

l+ q and r = 2 [15,17]. Another interesting case

occurs if l = q = 2, r = 1, m = 1 and r = 4. In

this case eq.(1) has the form

Lwavelet['] =

Z
dx

�
1

2
'x't � �'x'

4
xx +

�

2
'2
x

�
:

(7)

After the substitution u(x; t) = 'x(x � ct) the

corresponding NPDE becomes

�(v + 2�)u� 
u4x + 2@x(2�uu
3
x + �u2uxuxx)

�2�uu2xuxx � @xx(�u
2ux

2 = 0; (8)

where 'x(x; t) is a travelling wave u(x�vt). One
speci�c solution of eq.(8) is a modulated (or com-

plex shifted) Gaussian

'x(x; t) = u(x� vt) =
1
4
p
�
e�ik(x�vt)e�

( x�vt)2

2 :

(9)

This is a traveling wave with �xed velocity and

amplitude and arbitrary half-width. Also, for

t = 0 this function becomes the continuous Mor-

let wavelet [12,18] and can be extended to a basis

of localized solutions [12,19]. This is a complex-

valued function, depending on a real (in general

integer) parameter k. The set f�(x; k; d)gk;d2Z
is a quasi-orthogonal basis in L2

[R]
, where �(x; k; d) =

�(x�d; k) is the translated version of the Morlet

wavelet. The coe�cient k controls the scale or

the number of zeros of each function of the basis.

When the coe�cient k which labels the scale is

small the basis functions describe breather solu-

tions of the KdV and MKdV equations. When

k! 0, the complex exponential can be expanded

in Taylor series and the basis function approach

the Hermit polynomials. That is consistent with

the harmonic oscillator limit. Ususally there is

no sense to consider small the coe�cient of a

complex exponential. In the case the Morlet ba-

sis functions, having narrow support, the vari-

able x has a limited range.

Another interpretation for solution in eq.(9)

is given in the frame of the covariant phase-space

representation for light [20] since it gives a local-

ized probability for photons as localized waves.

The Hamiltonian associated with eq.(9) has the

form:

H =

Z
dx['t

@L

@'t
� L] =

Z
dx[� 1

16
u4 +

1

2
u2u2x

� 1

16
u2u2xx +

5

16
uu2xuxx]: (10)

We notice that there are lower order NPDE which

have the Morlet wavelet, eq.(10), for solution

uuxx � u2x + u2 = 0: (11)

Like in the case of the Lagrangian found in [15],

Lwavelet['] leads to the three laws of conserva-

tion: mass, energy and momentum. Also,Hwavelet

is conserved by Noether's theorem under the trans-

formations: ' ! ' + c1; x ! x + c2 and t!
t + c3; where c1;c2;c3 are constants. By intro-

ducing the Morlet solution in the Hamiltonian,

eq.(10), we can analyse Hwavelet(k) as a function

of k. The dependence of the real part of Hwavelet

on k, given in Fig. 2, shows that the spectrum is

5



bounded. For small k the system has one local

minimum, since in this approximation the sys-

tem is a harmonic oscillator. For large k's the

Hamiltonian shows a self-similar behavior. The

Morlet functions have features between similar-

ity and nonlinearity

�2
M(x; k) = �M (

p
2x; k0); (12)

with k0 =
p
2k. The nonlinear combinations of

	M are transformed into dilations in the k�space
and dilations in the coordinate x-space, both

with a factor of
p
2. Loosely speaking, the square

of function is equivalent to a dilation plus a trans-

lation in the basis, k ! p
2k. The Morlet basis

ful�ls a special multiplicative algebra

�(x; k)	(x; k0) = �

�
xp
2
;
p
2(k + k0)

�
: (13)

3 Discrete wavelets. Hamilto-

nian densities for the dilation

equation

In this section we show that any �nite-di�erence

equation is related to a certain type of Lagrange

or Hamiltonian problem. These types of equa-

tions mainly occur in wavelet theory. A wavelet

basis for L2
[R]

consists in a set of dilated and

translated copies 	n;k(x) = 	(2nx�k), k; n 2 Z,

of an initial wavelet 	(x) de�ned itself as a dila-

tion of a linear combination of translations of a

scaling function �(x)

	(x) =

1X
k=�N+1

(�1)kC1�k�(2x� k): (14)

The scaling function �(x) ful�lls the so called

two-scale equation (or dilation equation)

�(x) =

NX
k=0

Ck�(2x� k) =

NX
k=0

Ck�1;k; (15)

with coe�cients Ck restricted by the conditionsPN
k=0 Ck = 2and

PN
k=0 CkCk+2l = 2�0l, [12,129].

The operations involved in Eq. (14,15) are han-

dled by the translation operator T kf(x) = f(x+

k) and the dilation operator Dnf(x) = f(2nx).

Eq. 15 can also be written as � = Dj(T )� where

j(T ) is a N-th order polynomial in T�1. If we

introduce the di�erential realizations T k = ek@x ,

Dn = enx ln 2@x , valid only when acting on C1
(R)

functions then the two operators can be expressed

in terms of in�nite series of derivatives. Equa-

tions (14, 15) describe the selfsimilarity of the

basis f	n;k(x)gn;k2Z and L2(R) =
L

n2Z Vn where

each Vn is generated by all k-translations ofD
n	

for any positive integer n [19]. First natural at-

tempt to relate wavelets to algebraic structures

was their description in terms of the a�ne group

symmetry [21]. Recently, a more complete alge-

braic description was introduced [13] by proving

that for any discrete wavelet system a nonlinear

algebra can be constructed in terms of T and

D. In the following we generalize this structure

and give an algorithm to construct wavelets with

given symmetry.

The procedure works for functions having a

certain degree of smoothness such that both the

translation T and dilation D operators can be

expanded in formal operator Taylor series. Un-

der such circumstances any q-di�erence (two or

many scales) or �nite-di�erence equation, con-

taining T and D operators, is equivalent with an

in�nite-order PDE equation. To show that this

PDE emerges from a stationary Hamilton equa-

tion, we �rst focus on the translation operator

which will result in a �nite-di�erence equation.

We introduce a class of scalar �eld Hamiltonian

HT in the form

HT =

Z 1

�1

HT [x; u; @xu; :::; @
n
xu; :::]dx;

where the Hamiltonian density HT depends on

the x-coordinate and on the �eld u(x; t) together
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with its derivatives. The corresponding Hamil-

ton equation are

@u

@t
= @x

�HT

�u
=
X
k�0

(�1)k@k+1@
kHT

@u(k)
; (16)

where u(k) = @ku. The simplest type of Hamilto-

nian density, which can provide a �nite-di�erence

equation (related to translations) has the form

HT =
1

2

NX
j�0

1X
k�0

(�1)kCj

a2kj

(2k)!
(@ku)2; (17)

where N is arbitrary and gives the order of the

highest translation and ak are the steps of trans-

lations. Eq.(16) results in the Hamilton equation

@u

@t
=

NX
j�0

Cj(T
aj + T�aj)u; (18)

and consequently, the stationary solutions (@tu =

0) ful�l a �nite-di�erence equation. The Hamil-

tonian in eq.(17) introduces a limitation, since in

the corresponding Hamilton equation all trans-

lation operators occur only in pairs, that is sym-

metric combinations T a + T�a. Since the co-

e�cients Cj are arbitrary, the Hamiltonian in

eq.(17) can generate any type of symmetric �nite-

di�erence equation. Conversely, for any such

equation, it exists such a Hamiltonian, having

the �nite-di�erence equation, eq.(18), as its sta-

tionary Hamilton equation.

There is a geometrical interpretation of the

translation Hamiltonian, so far. If expressed in

a compact form, the Hamiltonian in eq.(17) be-

comes

H =
X
k

Ck
Z
(uT ku+ IuT�ku)dx; (19)

where Ck are the corresponding constants and

the operator I acts as inversion, If(x) = f(�x).
Actualy, this Hamiltonain is a linear combina-

tion of scalar products between the solution and

its translated versions. The real solution mini-

mizes the Hamiltonian and hence tryes to cancel

as many such scalar products as possible. This is

nothing but the tendency of cutting out (reduc-

ing) the support of solutions in order to make

all translations orthogonal. This is the under-

standing of the fact that �nite-di�erence equa-

tions usually provide �nite supported solutions,

like discrete wavelets.

Another example of constructing Hamilto-

nian systems for �nite-di�erence equations is in-

spired by the 1-dimensional linear damped oscil-

lator described by the formal HamiltonianHldo =

ebt=m(m _x2+ kx2)=2 where x(t) is the law of mo-

tion of a particle of mass m in an elastic �eld k

with friction coe�cient b. In this case, from the

Rund-Trautman identity �Hldo� + p� =const.,

with p = _x(t), �@x + �@t being the in�nitesimal

generator of space-time dilatation symmetry of

Hldo, it results a conserved quantity (even the en-

ergy is not conserved) associated with a continu-

ous scale invariance C = ebt=m(m _x2+kx2+bx _x).

We introduce the Hamiltonian density

HT =
ex

2

1X
k�0

ak(@
k
xu)

2; (20)

with ak arbitrary coe�cients. The corresponding

Hamilton equations for the stationary solution

(@tu = 0) reads

(21)

If we choose in eq.(20) the coe�cients ak such

thatAl = bl=l!, eq.(21) becomes simply T bu(x; 0) =

0, for any translation of a shift b. Further more,

in order to obtain the most general N th-order

�nite-di�erence equation,
PN

j=0 CjT
jbu(x; 0) =

0, we have to identify the coe�cients of the same

order of derivative of u in eq.(16) with those re-

sulting from the expansion T jb =
P

k�0(jb)
k=k!@k

where j = 0; 1; ::: acting on u. This results in a

system of linear equations

A0 = C0 + C1 + :::+ CN ;
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Ak =
bk

k!

�
C1 + 2kC2 + 3kC3 + :::+NkCN

�
:

(22)

By coupling eqs.(20-21) we have

(23)

which is the �nal equation to �x the aj 's as func-

tions of Ck's. Here j = [l=2+1=2] means integer

part. In other words, for any �nite-di�erence

equation described by the coe�cients Ck, step b

and orderN , we can �nd the corresponding coef-

�cients aj which provide the Hamiltonian eq.(20)

for this equation. Conversely, to any such Hamil-

tonian it corresponds a speci�c �nite-di�erence

equation.

In order to construct the dilation part of the

two-scale equation from a Hamiltonian formal-

ism, we introduce the density

HD =
1

2

1X
k�0

Ckx
2k(@kxu)

2: (24)

For a stationary �eld, the corresponding Hamil-

ton equation is

1X
j�0

jX
k=0

(�1)jCjx
2j�kDjk@

2j�k
x u(x; 0) = 0; (25)

where the coe�cients Djk are zero if k � 2j + 1

or k = 0 and in the rest are given by

Djk =
j!(2j)!

k!(j � k)!(2j � k)!
: (26)

Eq.(25) can still be written in a more compact

form

1X
n�0

Anx
n@nxu(x; 0) = 0; (27)

where

An =

NX
[(n+1)=2]

(�1)jCjDj;2j�n; (28)

Eq.(27) belongs to the typical form of dilation

equation with D operator expanded in Taylor

series. For example, if we choose An = 1=n! in

eq.(28), eq.(27) becomes u(2x; 0) = 0. The pro-

cedure can be extended to any discrete dilation

equations (q-di�erence) involving any number of

scales.

In the following, we introduce a dynamical

system described by a pair of functions u(�x �
V t), representing two traveling pro�les of shapes

u(�1;2) (�1;2 = �x � V t) running with �xed ve-

locity V in the same direction on the real axis

x. We introduce an in�nite-dimensional Hamil-

tonian for u(�1;2), associated with the two-scale

equation

HDT [u] =

Z 1

�1

X
n�0

�
tn@

n
x

�
u(�1)u(�2)

�

+dnx
2n@nxu(�1) � @nxu(�2)

�
dx

2
; (29)

depending on the arbitrary constants tn and dn.

By taking the functional derivative, the Hamil-

ton equations associated with eq.(29), _u(�x �
V t) = @x�HDT=�u(�x� V t) [24] for u(�x�V t)

become

X
n�0

NX
k=0

(�1)ndnDnkx
2n�ku(2n�k)(�1;2)+V u(�1;2)

�
X
n�0

(�1)ntnu(n)(�1;2) = 0: (30)

Eq.(30) can be related with any dilation equation

for an appropriate choice of the coe�cients tn
and dn. By using the di�erential realization for

T and D operators and by identifying in eq.(15)

and eq.(30) the same order of derivative for the

function (i.e. � in eq.(15) and u in eq.(30)) one

obtains an algebraic system of linear equations.
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For the coe�cients related with translation we

have

tn =
1

n!

NX
k=1

knCk � V �n0: (31)

For the coe�cients related to the dilation part

we have

(2� � 1)n

n!
=

nX
k=[(n+1)=2]

(�1)kdkDnk : (32)

The system eqs.(31-32) can be solved in both di-

rections. For any Hamiltonian in the form eq.(29)

with given coe�cients tk and dk, we can solve

eqs.(31-32) with respect to the coe�cients Ck

and �. Conversely, for a given two-scale eq.(15),

starting from its coe�cients Ck and dilation fac-

tor �, we can solve eqs.(31-32) and obtain the

coe�cients in the Hamiltonian in eq.(30). The

series in eqs.(31-32) are convergent for a large

class of functions since jtnj ' Nn+1

n! ! 0 when

n ! 1. If u(�x � V t) = ��(x; t) in HDT ,

eq.(30) is recovered but contains only even (odd)

powers of T�1, respectively. This duality sug-

gests, as a further study, the introduction of a

pair (�;	) for u(�x� V t).

In the case of the dilation equation of the

Haar wavelet, the solution is a discontinuous dis-

tribution, �0;0 = H(x)� H(x� 1). In order to

calculate the formal coe�cients for the Hamilto-

nian in eq.(29) (with � = �1) we can use the

dilation expansion. In the second order, the cor-

responding Haar Hamiltonian density is

h = �(x)�(1� x) + �(x� 1)�(�x)2

+

�
�2 +

x2

4

�
d�dx

�2

+
x4

32

�
d2�dx2

�2

+ :::

�
x

(33)

One can ether calculate the derivatives in the

above expression, or the derivatives in eqs.(29-

30). To avoid this problem we have to use a func-

tional sequence of di�erentiable functions �n,

generated by a test function �0, weakly converg-

ing towards �0;0. Hence, for each n we can use

the corresponding for the di�erential terms, the

corresponding term in the functional sequence.

Details of calculations can be found in [22].

Compacton-wavelet bases]Qualitative wavelet

analysis of nonlinear equations.

Compacton-wavelet bases

In this chapter we present qualitative analy-

sis of any NPDE in terms of their localized trav-

eling solutions by using wavelet methods. In

general the localized solutions (that is soliton-

like pulses) are characterized by three parame-

ters. Two geometrical, the amplitude (A) and

the width (L) and one dynamic, the group ve-

locity of the pulse (V ). This analysis provides

simple realtions between these parameters, with-

out actualy solving the NPDE. These usefull re-

lation describe the general behavior of the so-

lutions, their degree of compactness, the shape-

dependence of the velocity, etc.

For a given equation the procedure consists

in the substitution of all the terms of the NPDE

according to the following rule: ut ! �V ux;
u! �A; ux ! �A=L; uxx ! �A=L2 and so on.

Consequently, the NPDE is maped into a nonlin-

ear algebraic equation in A;L and V . In Table

1 we present several examples of application of

the method in speci�c NPDE used in physics or

other applications.

The validity of this substitution can be proved

by writing the NPDE on a very small interval of

the x-axis, where the behavior of the localized

function is enough close to a modulated Gaus-

sian. Then, apply a Morlet wavelet transform to

the equation. Details of the method are given in

Appendix 2. In Table 1 we have choosen nine

typical NPDE, as presented in the �rst column

by name and equation. In the second column we

presented the analytical traveling localized so-
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lution, if is known. This solution provides spe-

cial nonlinear relations between the amplitude,

width and velocity, given in the third column.

Finaly, in the last column is presented the result

of the wavelet method. This consists again in the

relation betwen the three parameters (A;L; V )

obtain through the above substitution, without

actualy solving the equation. The valability of

the procedure is provided by the comparison be-

twen column four and �ve, for any case, where

analytical solutions are available.

The �rst row present a linear case of the

wave equation, just for comparison. The wavelet

method provides the exact dispersion relation

between V and no information about the am-

plitude which is consistent with its arbitrariness

in the general solution.

The case of the KdV equation is described in

the second row. The method provide a general

expression for L(A; V ). If we need L to be pro-

portional with A, we have to put V proportional

with A. In this case we re-obtain the expression

among the parameters provided by the exact so-

lution, in column three. A �rst prediction of the

method is if we allow V to depend on a power

of the amplitude. This means solutions a higher

nonlinear coupling between shape and kinemat-

ics. The side e�ect would be a lower limit for A.

Smaller solitons than this limit can move vith ve-

locity proportional to the amplitude, only. The

same result is obtained happens for the MKDV

equation (third row), except that V is propor-

tional with the square of the amplitude in order

to have L a function of A only, like in the exact

solution case. Also, in the �fth row, we intro-

duce the Nonlinear Schr�odinger equation (NLS)

of order three with soliton solution, [3]. This

equation occurs in nonlinear optics or in the po-

laron model in solid state physics [4].

In the general case of a NLS of order n, when

no analytical solution is known, we can predict

the L(A; V ) dependence.

Similar situation occurs nn the case of sine-

Gordon equation, if we ask velocity to be propor-

tional with L2 (in the sixth column) , obtaining a

transcendent equation in A which is exactly the

case of its soliton solution (third column).

The power of prediction of the method is best

exempli�ed in the cases of the K(n,m) equations,

when there is no known localized (soliton or com-

pacton) solution [9,15,17]. The general relation

provided among the parametrs approaches the

correct relations for the exact solutions, in par-

ticular cases: n = m, n = 2m = 2, n = m = 3,

n = 3; m = 2 and n = 2; m = 3, [15]. For ex-

ample, in the last two columns of the Table 1

when n = m, there are the exact compacton so-

lutions. The original form of this solution for

K(n,n) was written with a small error in eq.(3)

of the �rst article in [17]. Many other examples

can be taken for di�erent values of n;m provided

with a correct prediciton for the behavior of the

solutions. In the typical trigonometric case of a

K(2,2) compacton (eq.(2) with � = 1, m = 1

and p = 0) we obtain from the Table the exact

relations A = 4V=3 and L = 4, [15].

Some new physical facts occur from this qual-

itative analysis, too. The traditional soliton (com-

pacton, breather, roton, etc...) always moves

with constant velocity on a rectilinear path (ex-

ception the roton case, soliton on the sphere pro-

duced in the absence of gravity and presence of

surface pressure [10], when the trajectory is a

circle, however the angular velocity being still

constant) This picture can hardly provide a re-

liable model for compact physical systems in in-

teraction, like particles, nuclei, molecules, etc.

The soliton class knows only uniform (asymp-

totic) motion and elastic scattering. A better ap-

proach would be provided by solitons with vari-

able speed.

For instance the case of a constantly decreas-

ing velocity associated with a nonlinear disper-

sion doubled by dissipation. If so, the amplitude

10



and the velocity of the soliton (compacton) will

decrease untill the total extinction. Before the

extinction, the velocity will be reversed and the

soliton will move the opposite direction. This is

the case when the velocity is still a linear func-

tion of amplitude but can change its sign, and it

was introduced in [17] for a K(2,2)+KdV equa-

tion

ut + (u2)x + (u2)xxx + �(u)xxx = 0:

In this case one has the relation V = C1A � C2

which produces a breaking of symmetry. Higher

compactons (A � C2=C1) will travel to the right,

smaller ones will travel to the left, while com-

pactons with the critical amplitude (C1=C2) will

stay at rest. We notice that the wavelet method

gives the correct guess in the case of the above

equation, too. In the case of the above equation,

one obtains the dependence

L =
p
(A+ �)=(V �A);

which still gives a constant width if V = �A+ �.

Such variable speed -variable amplitude so-

lutions are not necessarily a feature of linear plus

nonlinear dispersion. If we introduce in the last

column, last row expression a dependence of the

type V = 2A+ C, for the K(2,2) equation (hav-

ing nonlinear dispersion only) the half width de-

pends as a square root of A. Indeed, the shifted

compacton

u(x; t) = Acos2
�
x� V t4

�
+ �; (34)

with V = 32

�
�+A2

�
is a solution of the typical

K(2,2) equation, ut + (u2)x + (u2)xxx = 0, with

variable velocity induced by the amplitude. For

A = �2� the solution is stationary. An exam-

ple is presented in Fig. 5 for a time dependent

amplitude (oscillating) with a rate much slower

than the motion of the solution (adiabatic de-

coupling). The wavelet method cannot predict

this kind of solutions. They are either discontin-

uous (case in which the Proposition in Appendix

2 is not valid) or not-localized, case in whic the

method itself does not work.

However, these examples of variable speed

solitons are only kinetic pictures. There is so

far no dynamic mechanism capable to provide

the slow modi�cation of the amplitude creating

hence the change in the direction of the mo-

tion. This problem has been solved and it will

be published soon. The key for the introduc-

tion of such a dynamics is the coupling between

the traditional nonlinear picture (nonlinearity+

dispersion+di�usion) and the potential picture

(Schr�odinger additional terms). Moreover, if the

amplitude oscillates around the critical value, the

soliton will have an oscillating trajectory.

Another situation coverd by this method ocurs

if the KdV equation has an additional term de-

pending on the square of the curvature

ut + uux + uxxx + �(u2xx)x = 0: (35)

This is the case of extremely sharp surfaces (
uid,

surface oscillations of solids or vibrated granular

materials) when the surface pressure cannot be

linearized in terms of the curvature. The intro-

duction of the last term predicts a new type of

solitons having a superior bound for the ampli-

tude, at a critical width. Solitons narrower than

this critical width beging to decrease again to

zero amplitude. This solitons could exist in pairs

of the same amplitude at very di�erent width.

They may be related with the recent observed

"oscillons" in granular materials, [22].

Besides the examples presented so far in the

Table, the method provides a relaible criterium

for �nding of compact suported solutions. The

reason for this simple estimation works in so many

cases is given by the advantages of wavelet anal-

ysis on localized solutions. We stress that this

method has little to do with the traditional sim-

ilarity (dimensional) analysis, [15,17]. In that
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case one obtains relations only among powers of

A;L and V , and not relations with numeric co-

e�cients, like in our method.

The solution given in eq.(4) has a unique

width, that is a unique scale. From the point

of view of multi-resolution analysis the K(2,2)

equations acts like a �-band �lter, allowing only

this scale to come out of initial condition as a

stable solution. However, this solution is not the

unique. One can extend it to larger supported

functions. The most general compact supported

solution is a C2(R) combinations of piece-wise

constant functions and piece-wise cos2 functions.

An example is shown in Fig. 6 In the case of

the general K(2,2) equation, eq.(4), this piece-

wise solution is a smoothly connected series of

plateaus and squared cos functions arranged one

on the top of each other in any combination.

The amplitude �0, the hight of the plateau �

are related to the velocity. The length of the

plateau is given by �. This solution is not stable

in time since its di�erent parts travel with dif-

ferent velocities. The higher the amplitude the

faster travels, V = 2�0+4�. A simple compacton

can scatter such a smooth plateau. Because of

the area conservation they combine together in

a general solution, with the compacton traveling

on the top of the plateau with a higher velocity.

We still cannot say anything about the moments

when the compacton interfere with the ends of

the plateau. First comment is that such a family

of solutions can be organized in a spline basis,

of order two. The second comment is that the

class of the general solution includes all scales up

with respect to the simple compacton. Actually,

the K(2,2) equation acts like a low-pass �lter in

terms of space-time scales of the solutions.

In order to prove that the most stable solu-

tion is the compacton, as it has been �nd out by

many numerical experiments [9], we introduce in

the Hamiltonian, eq.(1), di�erent combinations

of plateaus and compactons. For example series

of disjunct compactons, or disjunct plateaus with

amplitude and heigth given by a certain series.

Also combinations of such series. In all these cal-

culations, it appeared that, for constant area, the

minimum energy is approached for combinations

of simple compactons of di�erent heights.

The existence of these general solutions give

the opportunity to construct bases of functions,

from the wavelet model. The robustness of the

simple compactons and the inaplicability of the

inverse scattering tools [9], that worked so well

for the KdV, MKdV, NLS and Sine-Gordon NPDE,

makes it clear that a new mechanism is under-

lying the dynamics of such solutions, like for in-

stance the existence of a nonlinear basis in which

compactons play the role of generic (mother) func-

tions.

For the sake of simplicity we will renormalize

the coe�cients of the K(2,2) equation such that

the support of the simple compacton is of length

one. That is we take �c(x; t) = �(�x; �0; 0; 0) on

[�1=2; 1=2].
We construct a multiresolution approxima-

tion of L2(R), that is an increasing sequence of

closed subspaces Vj , j 2 Z of L2(R) with the

following properties, [19]

1. The Vj subspaces are all disjoint each other

and their reunion is dense in L2(R).

2. For any function f 2 L2(R) and for any

integer j, we have f(x) 2 Vj if and only if

D�1f(x) 2 Vj�1 where D
�1 is an operator

which will be de�ned later.

3. For any function f 2 L2(R) and for any

integer k, we have f(x) 2 V0 is equivalent

with f(x� k) 2 V0.

4. There is a function, g(x) 2 V0, such that

the sequence g(x�k) with k 2 Z is a Riesz

basis of V0, [19].

In the case of the length one support solutions

of K(2,2) we chosse for the space V0 to be gen-
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erated by all translation of �c with any integer

k. The subspaces Vj for j � 0 are generated by

all integer translations of the compressed version

of this function, namely by �(2j�x; 2�j�0; 0; 0).

The subspaces Vj for j � 0 are generated by

all integer translations of the general solution

in eq.(36) constructed by a half compacton (in-

creasing from zero to �0, a plateau of length

2j � 1 and the corresponding decreasing half-

compacton. For example V�1 is generated by

�(�x; 2j�0; 1; 0). The spaces Vj ; j � 0 are all so-

lutions of K(2,2), the other are not any more.

The function g(x) is take to be �(�x; �0; 0; 0).

It is easy to prove that these de�nitions ful�ls

restrictions one, three and four. As for the sec-

ond criterium, we de�ne the action of the op-

erator D�1f(x) = f(2x) if f(x) 2 Vj with posi-

tive integer j, and D�1�(�2jx; 2j�0; 2
�j�1; 0) =

�(�2jx; 2�j+1�0; 2
�j+1 � 1; 0), for negative j. In

conclusion we constructed a basis of function made

of contractions of the simple compacton solu-

tion (which are not any more solutions) and of

a sequence of general solutions with non-dilated

compacton ends and dilated plateau. These func-

tions are still solutions of the equation. We can

write the corresponding two scale equation which

connects the subspaces (the equivalent of eq.(15))

�(�x; �0; 1; 0) = (�x; �0; 0; 0)+ (�(x� 1); �0; 0; 0):

(36)

We will denote generically by �k;j the elemnets of

this basis, that is �k;j(x) = �(�(x�k); 2j�0; 2
j�

1; 0).

In the following, we can expand any initial

data for the K(2,2) equation in this basis.

u0(x) =
X
k

X
j

Ck;j�k;j(x): (37)

We notice that the following equality holds for

j0>j

�k;j�k0;j0 =

� 6= 0 k0 = k � 2j0�j ; :::; (k+ 1) � 2j0�j � 1

= 0 in the rest.

(38)

After some elaborate algebraic calculations, by

using eq.(39), we show that the square of this

function (necessary since the equations is non-

linear of order two) will be given by

u2(x) =
X
k;j

X
j0�j

X
k02I

Ck;jCk0;j0

�
� 1X
i1=0

1X
i2=0

:::

1X
i
j0�j

=0

��(i1;i2;:::;ij0�j
);j0

�
�k0;j0 ;

(39)

where I is the range of k0 described in the �rst

line of eq. (39), and

�(i1; i2; :::; ij0�j) =

j0�jX
l=1

il2
j0�j0l+(j0�j)(j0�j+1)�l(l+1)2

+k2(j
0�j)j+(j0�j)(j0�j+1)2:

In eq.(40) the unique nonzero terms are, accord-

ing with eq.(39), those for which �(i1; i2; :::; ij0�j) =

k0, with k0 2 I . This result express the follow-

ing simple fact. The initial data is expanded in

di�erent scales, and di�erent translations. The

translations are mutual orthogonal so they don-

not give any contribution when we calculate the

square. When, in the expression of the square,

we have to multiply two di�erent scales, we re-

duce the wider scale in terms of linear combina-

tion of the narrower one, by using the two-scale

equation, eq.(15). This is roughly what eq.(40)

expresses. Out of all the terms in such a prod-

uct only about (2�j � 1)=(2�j
0 � 1) ' 2j

0�j of

them give non-zero contribution. In other words

this number is given by the number of solutions
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of equation �(i1; i2; :::; ij0�j) = k0, with k0 2 I .

This is the main advantage of treating nonlin-

ear problems with a basis constructed with scale

criteria.

Another advantage is that all the function in

the basis are actually contractions or dilations,

and translations of only two basic ones.

4 Comments and conclusions

Before concluding we would like to stress that

the most common feature of NPDE and �nite

di�erence equations is the existence of compact

supported solutions. Compactons and discrete

wavelets are typical examples. In the follow-

ing we introduce a criterium for the existence

of compact supported solutions. We restrict to

one-dimensional models described by a NPDE

dynamical equation

@tu = O(x; @x)u; (40)

where O is a nonlinear di�erential operator. By

taking into account only traveling solutions, this

NPDE reduces to a NODE in the coordinate

� = x� V t for an arbitrary velocity V . Suppose

u(�) is a compact supported solutions, it results

that this solution is not unique under given ini-

tial data. Indeed, if one �xes initial zero values

for the solution and its derivatives up to the or-

der of the eq.(42), at a certain point �0 of the

� axis, these conditions are ful�lled by the com-

pact solution or a linear combination of disjoint

translated versions of it, placed everywhere on

the axis, except on �0. Consequently, for such

initial data the solution is not unique and hence

compacticity implies non-uniqueness.

Since we can further transform the NODE

into a nonlinear di�erential system of order one

d~Udx = ~F (�; ~U); ~U = (u; @xu; :::); (41)

we can apply the fundamental theorem of exis-

tence and uniqueness to solutions of eq.(43), for

given initial data ~U(�0) = ~U0. If the function ~F

in eq.(43) ful�lls the Lipschitz condition (its rel-

ative variation is bounded) than, for any initial

condition, the solution is unique, [24].

For example, since any linear function is ana-

lytic and hence Lipschitz, we conclude that only

nonlinear functions ~F , coming out from NPDE,

allow the existence of compact supported solu-

tions. O compacton-like solution (in general com-

pact supported) implies non-uniqueness in the

underlying NPDE, which implies non-Lipschitzian

structure of the NPDE and hence the existence

of nonlinear terms.

In this paper we introduce some physical in-

terpretation for wavelets, as being related to lo-

calized physical nonlinear solutions. Self-similarity,

cluster expansion, bifurcations and universality

are all intrinsically related with nonlinearities.

Linear di�erential equations can be solved ana-

lytically and therefore their solutions are orga-

nized as linear spaces. On the contrary, in the

case of NLPDE, the analytical solution, if it ex-

ists, is unique. In the present paper we present a

new approach for NLPDE, towards a reparation

of this feature. For a �rst time, we proved that

starting from any unique soliton-like solution of

a nonlinear partial di�erential equation, we can

construct a whole basis which generates a special

Hilbert space of solutions. This basis is a wavelet

system, hence providing similarity properties.

We found a general Lagrangian which can

generate NPDE and wavelet generic equations.

This formalism provide the possibility of con-

structing nonlinear basis for NPDE. We show

that frames of self-similar functions are related

with nonlinear problems: nonlinear algebraic struc-

tures, nonlinear Hamiltonian systems, and espe-

cially with solitons with compact support, com-

pactons. To any scaling function we can asso-

ciate a nonlinear �nite generated algebra. Also,

for any two-scale equation we can construct a

special in�nite-dimensional Hamiltonian system

14



such that the corresponding scaling function is

one of its extrema. This analysis represents only

a �rst step towards understanding the relations

between systems described by NLPDE ( self-similar

solutions with or without blow-up behavior) and

wavelets theory. In addition, we stress the ev-

idence that compactons are objects which ful�l

both characteristics of solitons and wavelets, sug-

gesting possible new applications.

Such unifying direction between nonlinearity

and selfsimilarity, could bring new applications

of wavelets in cluster formation at any scale from

supernovae through 
uid dynamics to atomic and

nuclear systems, droplet bubbles and shell physics,

stable traveling patterns, fragmentation, cold �s-

sion, the dynamics of the pellet surface in inertial

fusion, stellar models, etc.
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Figure 3: Breaking up of an initial pro�le into

several compactons, and their separation in time.

The four lines are separated by the same time

interval.

Figure 4: The most general C2(R) localized so-

lution of the K(2,2) equation. It begins with

a constant plateau to the left, continued by a

half-compacton increasing part and then another

compacton, etc. They go on decreasing in the

same smooth way. A typical compacton is shown

to the left for comparison.

Figure 5: The solution of the mixed equation for

linear and nonlinear dispersion, K(2,2)+KdV in

the case of an oscillating velocity and amplitude.

Figure 6: Example of two compactons

and a dilated-compacton structure before the

breakingup process of a new compacton.

Figure 7: The eigenvalues a2, a4 and a8 of the

operator j0 in the Haar wavelet algebra para-

metrically ploted against the �rst one, a0. Wer

present the spectrum for 5 tipical values of a0
and in some places the continuous dependence is

also shown. This spectrum strongly depends on

this initial eigenvalue and its smooth variations

is self-similar.

.
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Table 1: Nonlinear equations, exact solutions

and wavelet analysis.

Equation Solution Relations W

Linear wave
P

Cke
i(kx�!t) V = c k2

uxx � (1=c2)utt = 0 A, L arbitrary

KdV A sech2x � V tL L =
p
2A L = 1

p
ut + 6uux + uxxx = 0 V = 2A

MKdV A sechx � V tL L = 1=A L = 1
p

ut + 6u2ux + uxxx = 0 A =
p
V

sine-Gordon A tan�1 
 ex�V tL A = 4 �V A
uxt � sin u = 0 V = L2

NLS(3) Aei(!t+kx)sechx � V tL L = 1A L = �V �
	t +	xx +	3 = 0 A ' V

NLS(n) unknown L = �V �
	t + 	xx +	n = 0

K(n,m) unknown for n 6= m L =
p
n(n2 +

ut + (un)x + (um)xxx = 0

K(n,n)

�
Acos2

�
x� V tL

��1n�1

for jx� V tj � 2n�n � 1 A = 2V nn + 1 L =
p
n(

ut + (un)x + (un)xxx = 0 L = 4n=(n� 1) if V

K(2,2) A cos2 x� V tL L = 4 L =
p
8A

ut + (u2)x + (u2)xxx = 0 for j(x� V t)=Lj � �=2 V = 3A=4 V =
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