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Abstract: - Conceptualizing, visualizing, reasoning about and implementing Dynamic Interactive Systems (DISs) 
are difficult and error-prone activities. To conceptualize and reason about the sorts of properties expected of any 
DIS, a framework that most naturally models DISs is essential. The declarative paradigm is closer than any other 
to the abstract behavior of DISs. In this paper we propose and explain why the Equivalent Transformation 
Framework (with its declarative roots) is an ideal framework for conceptually modeling DIS. The benefits to be 
derived from using this framework include guaranteed system correctness, high level abstraction, clarity, 
granular modularity, and an integrated framework for reasoning about, manipulating, and optimizing the various 
aspects of DISs. 
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1 Introduction 
Dynamic Interactive Systems (DISs) consist of 
independent objects interacting with each other and 
changing states dynamically over time. The 
interaction involves both events which occur at 
specific moments and more persistent status 
phenomena which can be observed any time. 
Practical DIS systems consist of multiple objects 
operating concurrently (i.e. parallel and 
communicating).  
    Conceptualizing, reasoning about, and 
implementing a DIS are difficult and error-prone 
activities. In addition, as argued in [1], the cause of 
many other additional difficulties in DIS system 
construction is the fact that traditional programming 
languages are algorithmic, and thus best suited to 
writing programs that acquire all their inputs before 
execution and produce a result only on termination.  
In contrast, DISs by their nature obtain inputs and 
output results throughout the life of the program. As a 
result DISs are incompatible with algorithmic 
languages. Current methods used to overcome this 
incompatibility add to system complexity.    
    Even though a variety of abstractions have been 
developed for modeling and reasoning about 
interactive systems (and by extension DISs), there is 

a lack of a coherent and robust paradigm for building 
robust DISs. Algorithmic languages treat programs as 
black boxes which produce final values on 
termination [1]. However, DISs are open to 
observation and influence from outside and must be 
able to adjust their internal states in response to each 
interaction in order to maintain the consistency of the 
computation. 
    Humans are incapable of reasoning properly using 
the technical logic used in computers; doing this only 
results in innumerable mistakes [3]. Therefore it is of 
vital importance that rules be developed for human 
reasoning. For DISs, modeling provides the means of 
doing this. Good models result in natural flow of 
programming from idea to implementation; 
manageable modules and a means of modification 
without major reorganization of the software. On the 
flip side, bad models can result in a “series of nasty 
surprises” [2]. These include interfaces that become 
clumsy because they are forced to accommodate 
unexpected interactions, and difficulty making even 
the simplest changes. The many difficulties involved 
when such a bad abstraction is used oftentimes can 
only be corrected by starting over from scratch (i.e. 
from the idea stage). Thus, we can see that using the 
right model is of paramount importance. 
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    The ET Framework [4, 6] not only supports 
interaction and dynamism directly (stemming from its 
declarative foundation) but can also efficiently adjust 
its computation to input changes. As a result it can be 
used to model DISs in abstract and then transform the 
optimized program into the target language. In 
addition, the ET Framework is very close to how 
humans actually think and so, we believe that by 
using the ET Framework to model systems we can 
bridge the gap between the type of reasoning that 
comes naturally to humans and the type of technical 
logic required by computers with regards to DISs. 
 
 
2 Dynamic Interactive Systems Scope 
Four of the most important concepts in DISs are:1) 
objects; 2) events; 3) state; and 4) interaction. An 
object can be regarded as any item that can be 
individually selected or manipulated, e.g. a data file, 
or piece of text. An event is something that occurs in 
a specific place at a particular instance in time, or 
interval of time. As a result, it is regarded as an 
atomic, non-persistent occurrence. A state, on the 
other hand, persists and has a measurable value at any 
given moment. Interaction takes the form of both 
object to object communication and environment to 
object communication. 
    Databases are a form of DIS. In database systems 
multiple concurrent users access, view and may 
modify data (i.e. the attributes of entities). As a result 
of the access and modification by multiple users the 
data in the database is constantly changing and can 
thus be viewed as being dynamic. Interaction takes 
the form of users interacting with the data. 
    Another form of DIS is Web based systems. These 
systems must also have the ability to accommodate 
access by multiple concurrent users. 
    DISs range from the very simple (e.g. a Ping-Pong 
game) [7] to the very complex (e.g. a climate system). 
 
 
2.1 Features of Dynamic Interactive Systems 
Two of the major features of DISs are: (1) 
Independence and; (2) parallelism (concurrency). All 
objects in the system operate independently of each 
other. As a result, the state of, and the standard 
actions carried out by an object are not dependent on 
the other objects in the system. Parallelism refers to 
the fact that all objects can carry out various (similar 
and/or dissimilar) actions concurrently.  

     DISs consist of two sides: (1) Procedural and; (2) 
declarative. The procedural side includes simple 
procedural oriented applications, while the 
declarative side includes database systems and takes 
into consideration such attributes as correctness.  
 
 
3 Modeling Dynamic Interactive 

Systems using ET 
Equivalent Transformation (ET) [4, 6] is a new 
computational paradigm that is based on semantic 
preserving clause transformations carried out by sets 
of rewriting rules generated from specifications. In 
the ET Framework (ETF), a given complex problem 
is transformed successively and equivalently into a 
simpler problem until a problem from which answers 
can be directly or easily obtained is reached. 
 
 
3.1 Representation and Computation with 

ET Rules 
An ET rule describes methods of rewriting various 
clauses into other clauses (or sets of clauses). A rule 
specifies, in its left-hand side, a pattern of atomic 
formulas to which it can be applied, and defines the 
result of its application by specifying, in its right-
hand side, one or more patterns of replacement atoms. 
The rule is applicable to a definite clause when the 
pattern in the left-hand side matches atoms contained 
in the body of the clause. When applied, the rule 
rewrites the clause into a number of clauses, resulting 
from replacing the matched body atoms with 
instances of the patterns in the right-hand side of the 
rule. The actual computation of the solution to a 
problem is accomplished by the repeated application 
of equivalent transform rules. 
    There are two types of ET rules. These are: 1) D-
Rules (deterministic) and, 2) N-Rules (non-
deterministic).  
 
 
3.1.1   ET Variables 
The ETF consists of named and anonymous 
(unnamed) variables. A named variable begins with 
the asterisk symbol, ‘*’ and is followed by a letter, 
numeral, etc. (e.g. *X, *X1, *5). An anonymous 
variable begins with the question sign symbol ‘?’ and 
may or may not be followed by a letter or numeral. 
(e.g. ?, ?X, ?5). Wherever a named variable changes, 
other variables having the same name will change 
simultaneously. In contrast to this, anonymous 

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007     254



variables, even if they have the same name, are each 
treated as different variables.  
    Objects can be richly expressed using information-
attached variables (variables to which information 
has been attached). This type of variable has the 
format: *x~(information). Here ‘*x’ represents the 
information-attached variable; (information) is the 
attached information; and the sign tilde (~) ties the 
information to the variable.  
    An ET variable exists only in the rule in which it 
was created, so it is limited in scope. For example, a 
variable, *var1, created in a rule, rule1, will be 
different from a variable with the same name, *var1, 
in rule, rule2. As a result, variable communication 
takes place only within the rule in which the variable 
was created. Since ET uses pattern matching, instead 
of determination of input clauses by unification, 
inter-rule communication is in the form of values, not 
names.  
    ET variables are immutable, i.e., once an ET 
variable is assigned a value that value does not 
change. After a particular rule has been applied to a 
clause, the variables (and by extension the values 
they contain) in that rule, are destroyed. In the next 
computation cycle, new variables are created and new 
values assigned. In this way, values are changed in 
ET rules. 
 
 
3.1.2  Object Creation and Termination 
In the ETF, a problem is formulated as a declarative 
description, represented by the union of two sets of 
definite clauses, one of which is called the definition 
part, and the other the query part. The definition part 
provides general knowledge about the problem 
domain and descriptions of some specific problem 
instances. The query part specifies a question 
regarding the content of the definition part. From the 
definition part, a set of ET rules is prepared. The 
problem is then solved by transforming the query part 
successively, using the ET rules, into another set of 
definite clauses from which the answers to the 
specified question can be obtained easily and directly.  
    The query part described above can be used to 
represent an object. This object is expressed as a 
definite clause in the format: 
 
  head  ← atom1, atom2, atom3, atom4, atom5. 
 
Where head represents the object and the body atoms 
represent the internal components of the object.  

    In the ETF computation of a program takes the 
form of state transitions, where problems are 
regarded as states. A final state is a problem that 
consists of only unit clauses, which is of the form: 
  
  head  ←. 
 
    The computation of a program prg on a problem 
prb is a nonempty finite or infinite sequence com = 
[st0, st1, st2, …] of states such that st0 = prb and the 
following conditions are satisfied: (1) for any two 
successive states sti, sti+1 in com, sti is not a final state 
and prg transforms sti into sti+1 in one step; (2) if com 
is finite, then last(com) is the final state or prg is not 
applicable to last(com), where last(com) denotes the 
last element of com. 
    If com is finite and last(com) is the final state, then 
the answer set obtained from com is the set  
   
 {g | ((a ← ) ∈ last(com)) & (g is a ground instance of a)}, 
 
and is undefined otherwise.  
    As a result, each state transition carried out by the 
ET program will result in a change in state of the 
object (an instance of the object). This is represented 
by the state of the definite clause at each successive 
transformation stage during the application of ET 
rules. The unit clause that remains at the end of 
computation represents the terminated object. 
 
 
3.1.3  ET and Event-driven Semantics 
The notion of events plays a central role in the 
construction of most software that involves 
interaction or simulation. However, in these systems, 
the events are often just symbols with no intrinsic 
meaning. ET rules easily satisfy event-driven 
semantics and also provide intrinsic meaning to the 
events. If we regard events as inputs from the 
environment (inputs originating outside of the rule), 
then an ET rule that possesses a condition section will 
be inherently event driven. That is, the condition 
section has to be satisfied before the rule can be 
executed. The condition to be satisfied is dependent 
on forces external to the rule. 
 
 
3.2 Modeling using ET 
DISs comprise a number of objects, interaction 
between objects and, interaction between objects and 
their environment. In the ETF, these are realized by 
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means of atoms, rules, and events (installed 
predicates). 
 
 
3.2.1 Object Representation and Manipulation 
If we use an atom to represent an object, the internal 
state of the object (atom) can be represented by a 
definite clause of the form: 
 
  atom ← atom1, atom2, atom3, atom4, atom5. 
 
To move this atom and describe its interactions with 
other atoms and the environment, rules are used. A 
typical rule is of the form: 
 
atom1, atom2, {event} ==> {specialization}, atom3, atom4. 
 
Some of the ways in which this rule can be used are: 
(1) Changes in atoms appearing in the rule are 
expressed by means of atom replacement and 
specialization; (2) atoms that are changed without the 
changes appearing in the rule (i.e. changes are not 
transparent to the rule) are expressed by means of 
specialization; (3) changes influenced by the 
environment are received and examined via events. 
 
 
3.2.2 Advantages of the Description Methods  
Some of the advantages of these description methods 
are: (1) The model used is a combination of the 
clause and rule models, which are both well known 
models; as a result, it has clarity and significance and 
is general purpose; (2) the modification being 
expressed by the rule is localized so efficient 
execution is possible; (3) as a result of their high 
level of independence, rules are very easy to write 
and; (4) events are handled uniformly as installed 
predicates.  
 
 
3.2.3 Analysis of Interaction 
In the modeling of DISs we can divide its domain 
into two parts – object and environment. Interaction 
between objects is represented using ordinary rules. 
Interaction between objects and the environment is 
expressed by means of event-driven rules. In this case 
interaction is achieved through: (1) Change based on 
replacement with rule (head and body); (2) change 
based on specialization with rules (through the 
medium of variables, or even other atoms); (3) 
through the use of getContext it is possible to obtain 
the status of atoms that are not head atoms and; (4) 

through the use of events influences from the 
environment can be accommodated. 
 
 
4 The Declarative Side: Correct 

Problem Solving 
In this section we will explain some of the features of 
the declarative side as it relates to ET and DISs. 
 
 
4.1 Definite Clause Set and its Meaning 
A definite clause, C, is an expression of the form h ← 
b1, b2, …, bn, where  n ≥ 0. h is called the head of C 
and is denoted by head(C).  The set {b1, b2, …, bn} is 
called the body of C and is denoted by body(C). 
When n = 0, C is said to be a unit clause. When all 
atoms appearing in the definite clause, C, are ground 
atoms, C is said to be a ground clause. The set of all 
definite clauses is denoted by Gclause. A declarative 
description is a set of definite clauses.  
     A set of ground atoms represented by a declarative 
description, P, is called the meaning of P, denoted by 
M(P), and is defined as: 

 
Where: 

 
x is an arbitrary set of ground atoms, θ a 
specialization, S a set of specializations. M(P) is a 
least fix point of TP , and agrees with a least model 
when a definite clause is regarded as a logical 
formula. 
 
 
4.2 The Intersection Problem 
Let D be a set of definite clauses. Let Q be the set of 
atoms which represent the set of all queries for D. 
Then a problem is given in the form of the pair (D, Q). 
For any atom α, let rep(α) denote the set of all 
ground instances of α. Consider computing the 
solution set A which satisfies A = M(D) ∩ rep(q) for 
a query q ∈ Q.  
 
Theorem 1. For a query q, let q′  be the atom obtained 
from q by changing its predicate into one that does 
not appear in D. Then: 
 
M(D) ∩ rep(q) = {q|q′ ∈ M(D ∪ {q′ ← q})}. 
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Theorem 2. For a set of unit clauses, denoted by F, 

 
A rule r is an ET rule in D, iff 
 
(S, S′) ∈  r  ⇒  M(D∪ S) = M(D∪ S′)   (1) 
 
for arbitrary sets S and S′ of definite clauses. Let Q0 
be a set of definite clauses that is defined by Q0 = 
{ans(q) ← q}. Let also Qn (0 ≤  n < ∞) be a set of unit 
clauses. Assume that we have a transformation 
sequence Q0 →…→ Qn obtained by applying ET 
rules successively. Then from Theorems 1, 2, and (1): 

 
    A program in the ET model is a set of rules which 
executes ET such that: 
 
Q0 →…→ Qn  
M(D ∪ Q0)  = … = M(D ∪ Qn) 
 
starting from Q0  = {ans(q) ← q} for all q ∈ Q, and 
finally computes A [5]. 
 
 
4.3 Correctness 
Discussions of correctness must take into 
consideration the intended meaning of a program. An 
intended meaning of a program is a set of ground 
goals. A program P is correct with respect to an 
intended meaning M iff M(P) is contained in M.    
That is, the program should do only what we intended 
it to. 
    In a Rule-based Equivalent Transformation 
(RBET) framework, such as the ETF, the correctness 
of computation relies solely on the correctness of 
each transformation step. Given a declarative 
description D ∪ Q, where D and Q represent the 
definition and query parts of a problem respectively. 
The query part Q is said to be transformed correctly 
in one step into a new query part Q′,  by the 
application of a rewriting rule, iff the declarative 

they have the same declarative meaning. A rewriting 
rule is considered to be correct, iff its application 
always results in a correct transformation step. 
 

descriptions D ∪ Q and D ∪ Q′ are equivalent, i.e., 

.4 ET Computation and Correctness 
a set of 

l is a set of rewriting 

 Why the ET Framework can  

e fol  among the 

able 

2.  

3.  – In order to 

 
4
In the ET model a problem is represented as 
definite clauses, and a specification is a pair (D, Q), 
where D is a set of clauses representing background 
information (i.e. general knowledge about an 
application domain and description of particular 
domain instances), and Q is a set of problems, each of 
which is also a set of definite clauses. It is required 
that for each problem q ∈ Q, the predicates occurring 
in the heads of clauses in q occur neither in D nor in 
the bodies of the clauses in q. 
    A program in the ET mode
rules and program computation consists of successive 
rule application. A program prg is partially correct 
with respect to a specification S = (D, Q) iff for each 
q ∈ Q, prg yields the correct answer set to q 
whenever it transforms q into a set of unit clauses in  
a finite number of transformation steps. It is totally 
correct with respect to S iff it is partially correct with 
respect to S and it always terminates with a set of unit 
clauses when executing each problem in Q. 
 
 
5
  Effectively Model DISs 
Th lowing features of the ETF are
many reasons why it is ideal for modeling DISs: 
1. Clarity - ET rules are intuitively understand

and, in the ETF the states of objects are clearly 
discernable as the state of its computation is 
clearly shown. This type of clarity allows us to 
check whether or not a change of state is valid.   
Rich Expressivity - The status, properties and
interactions associated with an object can be 
richly expressed in ET using information-
attached variables and ET rules. 
Nondeterminism and Parallelism
reliably model independent concurrent objects 
and their interactions the ability to simulate 
parallel processes is invaluable. The inherent 
nondeterministic nature of the ETF gives us the 
ability to simulate either of three (3) types of 
parallelism. These are: (1) OR-parallelism; (2) 
AND-parallelism and; (3) Rule-parallelism 
(unique to the ETF).  
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4. High Level Abstraction - An abstraction is an 
idea reduced to its essential form [2]. It provides 
us with the ability to focus on a concept while 
safely ignoring some of its details (i.e. different 
details are handled at different levels). The best 
abstractions capture their underlying ideas 
naturally and convincingly and provide a means 
of visualizing, expressing, analyzing, 
manipulating, and optimizing an idea before 
commitment to code. Without abstractions 
systems tend to be overly complex and 
intellectually hard to manipulate. Languages that 
support abstraction are needed in order to create 
intellectually manageable programs. The ETF 
operates at the conceptual level and so it both 
supports and provides a high level of abstraction. 
As a result the system can be freely manipulated 
and optimized without the restrictions associated 
with concrete implementation details such as 
type declaration, memory allocation, etc.  

5. Independent Rules - The highly independent 
nature of ET rules further strengthens the 
capability of the ETF to provide powerful 
abstractions. As each rule can be written and 
focused on exclusively, we are able to use 
different rules to safely and independently 
represent differing types and levels of details in 
an abstraction. 

6. Dynamic Addition and Deletion of Rules - In the 
ETF rules can be dynamically added and deleted. 
This gives additional versatility in the real-time 
representation of new information and the 
dynamic addition and deletion of objects.  

7. Natural Connection to Aspects of Database 
Systems - The ETF connects naturally to the 
semantics and reasoning underlying database 
systems. Atoms can be used to represent entities. 
The relation between entities and their 
interactions can be represented by rules. 

8. Guaranteed Correctness - The structure of the 
ETF guarantees correct operation of the system. 
This was explained fully in sections 4.3 and 4.4. 

9. Declarative Semantics - DISs inherently satisfy a 
declarative model of computation [1]. They are 
required to accommodate new information at 
random points in time, while maintaining the 
consistency of their computations. This is easily 
done in the declarative paradigm while in the 
algorithmic paradigm new information may 
render the algorithm completely useless. The 
underlying declarative semantics of the ETF 

provides us with a means of connecting directly 
to the underlying nature of DISs and thus enables 
us to visualize and model all of its various 
aspects.  

10. Integrated System - The ETF is an integrated 
modeling system, i.e., it is able to model the 
entire DISs’ spectrum without the need for any 
component external to the framework.  

 
 
6 Conclusion 
In this paper we looked at some of the problems that 
currently obtain in the construction of Dynamic 
Interactive Systems (DISs); and examined why and 
showed how the ET framework (ETF) can be used to 
overcome these difficulties. We also explained how 
the ETF can give a comprehensive conceptual model 
for DISs, which is intuitive, coherent, robust and 
correct. This model of DISs in the ETF, and the 
benefits contained therein, can be easily implemented 
in the language(s) of choice by transformation. 
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