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Abstract: - We propose a two-step procedure to estimate the frequency of a deterministic sinusoid, with 

unknown parameters, corrupted by additive, white, zero-mean noise, based on the Pisarenko Harmonic 

Decomposition. A rough PHD estimation is performed in the first step, and a multiple of the unknown 

frequency is estimated in the second step. The variance of the PHD estimator is significantly reduced. 
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1   Introduction 
We consider the problem of the frequency 

estimation of a signal that consists of a sine wave 

with additive, white noise, from a finite number of 

consecutive samples. This problem has a long 

history [1], and it is relevant for a wide field of 

applications such as communications, radar, sonar, 

speech processing, measurements, etc [2]. 

      In many applications, complex valued 

exponentials are prefered to real valued sinusoids, 

especially when both in-phase and quadrature 

components of real signals are available, so that 

complex valued signals can be readily constructed 

inside computers [2]. The interest in complex 

versions of signals in frequency estimation 

originated with the discovery of the fact that the 

maximum likelihood (ML) frequency estimator for a 

complex exponential is the maximum of the signal's 

periodogram [3]. As ML estimators are not 

computationally efficient, other more efficient 

suboptimal estimators have been proposed and 

studied [4-9 ]. 

      The problem of the ML estimator for a real 

sinusoid has also been addressed [10], and the 

solution turned out to be less simple than in the 

complex case. The ML estimator suffers again of the 

problem of computational complexity, so that 

suboptimal but more computationally efficient 

estimators exist in this case too. Some of this 

estimates can be derived from the more general 

spectrum estimators presented in the review [1]. The 

PHD is such a suboptimal estimator that relies on 

the eigenvalues of the covariance matrix of the 

signal. Its statistical properties has been extensively 

studied, and implementation in the case of a real 

sinusoid turned out to be very simple (see [11], [12] 

and the references cited therein). Also for the case of 

a single real sinusoid, a Reformed PHD (RPHD) 

estimator, which exhibits better statistical properties 

than the PHD, has been introduced recently [13], 

[14]. 

      In order to decrease the estimator variance, we 

propose in this paper to extend the PHD to a k-PHD, 

through which we compute the signal's (digital) 

frequency from the estimated cosine of its k'th 
multiple.  In order to raise the inherent ambiguity, a 

rough estimate of the frequency must be known a 

priori, or it must be estimated by other, less 

computationally complex means. Here we will use 

the PHD for the initial estimate too, in order to show 

that the variance of the newly introduced estimator 

is significantly reduced with respect to the variance 

of the known one. We will also compare the 

variance of our estimator to the Cramer-Rao bound.      

 
 

2   Description of the method 
We consider the following discrete-time signal 

model 

 

( ) ( ) ( ) cos( ) ( ), 1..x n s n q n n q n n Nα ω ϕ= + = + + =
                                                                               (1) 

where the amplitude 0α > , frequency (0, )ω π∈  

and phase ϕ are deterministic but unknown 

quantities, and q(n) is a Gaussian, white noise, 

uncorrelated with the signal, with zero-mean and 

variance 2σ . The signal-to-noise ratio is 
2 2/(2 )SNR α σ= . Following [1], we review here 

briefly the derivation of the PHD estimator in order 

7th WSEAS International Conference on Electric Power Systems, High Voltages, Electric Machines, Venice, Italy, November 21-23, 2007     243



to introduce its application to the estimation of a 

multiple of ω. The sinusoid obeys the following 

linear prediction equation for any fixed integer k: 
 

          ( ) 2cos( ) ( ) ( 2 ) 0,s n k s n k s n kω− − + − =      (2) 

 

(n denotes the discrete time). It is possible to derive 

from (1) and (2) the following vector equation: 

 

 ,T T
n n=x a q a                                    (3) 

 

where [ ( ) ( ) ( 2 )]Tn x n x n k x n k= − −x , 

[ ( ) ( ) ( 2 )]Tn q n q n k q n k= − −q , and 

[1 2cos( ) 1]Tkω= −a . If both sides of (3) are 

premultiplied by xn, the expected value is taken, and 

the fact that s and q are uncorrelated is taken into 
account, the following eigenequation results 

 

 2 .xx σ=R a a                                   (4) 

 

In (4), Rxx is the signal autocorrelation matrix, which 

has the shape 

 

 

0 2

0

2 0

,

k k

xx k k

k k

r r r

r r r

r r r

 
 =  
  

R                           (5) 

 

where, for any integer p, 
{ ( ) ( )} { ( ) ( )}pr E x n x n p E x n p x n= − = +  is the value 

of the signal's autocorrelation function at lag p. 
Solving (4) for cos( )kω yields 

 

 

2 2

2 2 8
cos( ) .

4

k k k

k

r r r
k

r
ω

+ +
=                      (6) 

As the values of the autocorrelation function are not 

known, the following estimate at lag m must be used 

[15]  

 
1

1
( ) ( )

N

m
n m

r x n x n m
N m = +

= −
− ∑                     (7) 

 

(by a slight abuse, we have used the same notation 

for the true values of the autocorrelation function 

and for its estimates). 

      The PHD method results for 1k =  in the above 

argument. From (6) we get the following estimate 

for ω, denoted 1ω̂  

 

 

2 2

2 2 11

1

1

8
ˆ cos .

4

r r r

r
ω −

 + +
 =
 
 

               (8) 

      For 1k > , (6) and (7) provide an estimate ˆ kω  of 

ω as follows. Let ˆcos( )k kkρ ω=  denote the value of 

the LHS of (6) when in the RHS the estimates (7) 

are substituted. The roots of (6) are 

 

1 11
( 1) cos ( ) 2 , 1,2,...,

2

p
p k

p
p k

k
ω ρ π− −  = − + =    
                                                                                (9) 

where we have denoted by [x] the largest integer 
smaller than x. If we dispose of a rough estimate 1ω̂  

for ω, then the above defined ˆ kω  is equal to the pω  

in (9) calculated for 1
ˆ

1
k

p
ω
π

 = +   
. 

      We propose the following two-step frequency 
estimation procedure based on the PHD and theory 

presented above, which can be referred to as k-PHD: 

1. Get a rough estimate of the unknown frequency 

using a low complexity method; in particular, the 

PHD (1-PHD) can be applied, perhaps with a small 

value of N. 2. Use (6) and (9), perhaps with a larger 

value of N and 1k >  in order to obtain a better 

frequency estimate. The way to choose an 

appropriate value for k will be presented bellow. 

      We will show now that theory and computer 

experiments confirm that the estimator variance is 

significantly reduced in the case of the k-PHD with 

respect to the 1-PHD, the price paid being an 

increase in computational complexity that can be 

acceptable in many practical situations. 

 

   

3    Estimator variance  
The 1-PHD is an asymptotically unbiased frequency 

estimator, whose variance has been calculated and 

reported in [12]. Following the same procedure, we 

have calculated the variance for the k-PHD, and the 

result is as follows 

 

 
2 2

ˆvar( ) ,
sin ( )

k

A B C D

F k
ω

ω
+ + +

=                      (10) 

 

where 

 

 
4 2 4 2cos (2 ) cos ( )

,
2

k k
A

N k N k

σ ω σ ω
= +

− −
              (11) 
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2 2 3 2 2 2

2

2 2 2 2 2

2

2 2

( 2 )cos (2 ) cos ( )

( ) 2

( 4 )cos(4 )cos ( ) cos(2 )

( 2 )

2 ( 3 )cos( )cos(2 )cos(3 )
,

( )( 2 )

N k k k
B

N k N k

N k k k k

N k N k

N k k k k

N k N k

α σ ω α σ ω

α σ ω ω α σ ω

α σ ω ω ω

−
= +

− −

−
+ −

− −

−
−

− −
                                                                              (12) 

  

 
2 ( , , , )cos(2 )

2( )

N k k k
C

N k

α β ω ϕ ω −
= 

−
 

 

 

2
2 ( 2 ,2 , , )cos( )

,
2( 2 )

N k k k

N k

α β ω ϕ ω −
− − 

             (13) 

  
2 2 2

2

2 2 2

2

2 2 2

2

2 2 2

2

2 2 2

2

2 2 2

( ,0, , )cos (2 )

2( )

( 2 ,2 , , )cos (2 )

( )

( ,2 , , )cos (2 )

2( )

( 2 ,0, , )cos ( )

2( 2 )

( 4 ,4 , , )cos ( )

( 2 )

( 2 ,4 , , )cos ( )

2(

N k k
D

N k

N k k k

N k

N k k k

N k

N k k

N k

N k k k

N k

N k k k

N

α σ β ω ϕ ω

α σ β ω ϕ ω

α σ β ω ϕ ω

α σ β ω ϕ ω

α σ β ω ϕ ω

α σ β ω ϕ ω

−
=

−

−
+

−

−
+

−

−
+

−

−
+

−

−
+

2

2 2

2 2

2 2

2 )

( 2 , , , )cos( )cos(2 )

( )( 2 )

2 ( 3 ,3 , , )cos( )cos(2 )

( )( 2 )

( 2 ,3 , , )cos( )cos(2 )
,

( )( 2 )

k

N k k k k

N k N k

N k k k k

N k N k

N k k k k

N k N k

α σ β ω ϕ ω ω

α σ β ω ϕ ω ω

α σ β ω ϕ ω ω

−

−
−

− −

−
−

− −

−
−

− −
                                                                                                                            

                                                                             (14)        

                                                                                                                                      

 

2

2

2

(2 cos(2 ))

2

2 cos( ) ( , , , )

( 2 ,2 , , )
,

2( 2 )

k
F

k N k k

N k

N k k

N k

α ω

α ω β ω ϕ

α β ω ϕ

+
=

−
+

−
−

−
−

                                                                                                                   

                                                                              (15) 

and 

( )
1

( , , , ) cos (2 ) 2

sin( )cos( ( 1) 2 )
.

sin( )

N

n

N M n M

N N M

β ω ϕ ω ϕ

ω ω ϕ
ω

=

= + +

+ + +
=

∑
          (16) 

       

The derivation of the variance of the k-PHD 

estimator is identical to the derivation for the 

variance of the 1-PHD estimator from [12] and 

therefore will be skipped. The results in [12] can be 

obtained from (10)...(16)  by making k=1.  

     

    

4   Computer simulation results and 

comments  
In order to demonstrate the performance of the k-
PHD estimator we have made computer experiments 

with a sinusoid of amplitude 2  with white, 

additive noise. 

      In Fig. 1, the variance of the frequency estimate 

in function of frequency is presented. These 

simulation results provided were averages of 1000 

independent runs. The calculated variances and the 

Cramer-Rao lower band (CRLB) [15] are also 

shown in Fig.1. We have used the same signal 

length N for both the initial estimate (k=1) and the 
second estimate (k=3) in order to show the decrease 

of the variance, which is between 5 and 15 dB, 

except for frequencies around 
3

π
 and 2

3

π
.  The 

reason of this behaviour results from the following. 

We have  

( )2

2 2

ˆvar( ) { cos( ) cos( ) }

ˆ ˆ( ) ( )
4sin sin .

2 2

k k

k k

E k k

k k
E

ρ ω ω

ω ω ω ω

= − =

 + −    
    
     

   

 

 

Fig. 1. Variances versus frequency at SNR=20 dB, 

N=100, and ϕ=π/8. 
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For small k and a good estimation (small | |kω ω− ), 

this equation implies 

 
2 2

var( )
ˆvar{ } .

sin ( )

k
k k k

ρ
ω

ω
≈                       (17) 

 

The kρ  are calculated in terms of the signal's 

autocorrelation function at lags k and 2k. Therefore 

the numerator in (17) increases much less with k 
than the denominator. Furthermore, the variance 

becomes unbounded at frequencies ,m
k

π
 0..m k= . 

In a practical situation, we dispose of a first 

frequency estimate, so that k can be chosen such that 
the case when the frequency variance becomes 

unbounded can be avoided. 

  

      

5   Conclusion 
We have proposed a two-step procedure to estimate 

the frequency of a sinusoid with deterministic but 

unknown amplitude, frequency and phase, corrupted 

by Gaussian, additive, zero-mean white noise, 

namely the k-PHD.  In the first step, a rough 

estimate of the frequency is obtained, and it is used 

in the second step to raise the ambiguity introduced 

by the fact that the cosine of a multiple of the 

frequency is estimated. We have selected the 

Pisarenko Harmonic Decomposition for illustration 

of the two-step method, due to its low computational 

complexity. We have calculated the variance of the 

proposed frequency estimator and showed, both 

analitically and through computer experiments, that 

it resulted significantly lower than in the case of the 

one-step, classical PHD method. 

      Application of the two-step procedure is not 

restricted to the PHD. We have demonstrated its 

effectiveness when applied to the RPHD [16]. 

Future work will de dedicated to the application of 

the two-step method to the complex case. 
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