
Building Intelligent Educational Networks

MARIAN CRISTIAN MIHAESCU

Software Engineering Department

University of Craiova

Bvd. Decebal, Nr. 107, 200440, Craiova, Dolj

ROMANIA

 http://software.ucv.ro/~mihaescu_cristian/

Abstract: - An e-Learning platform together with its users may be seen as an Educational Network. Within

such an Educational Network there are issues like: low reliability, unacceptable time response or bad resource

management. The usual protocol between clients (users) and server (the e-Learning platform itself) is HTTP.

This stateless protocol uses only request/response type interactions between clients and server. For

improvement of afore mentioned issues there was built a module that gives the “intelligent” character of the

Educational Network. This module records user performed actions, levels of data traffic and other performed

activities in an attempt to solve or improve presented issues. The enforced mechanisms use state of the art

machine learning algorithms, mathematical modeling and dynamic structures management, giving thus the

intelligent character of the educational network.

Key-Words: - data traffic monitoring, machine learning, e-Learning, dynamic data structures

1 Introduction
The ever increasing demand for higher bandwidth,

new applications and new protocols, as well as

certain operations and manageability requirements

of educational networks ask for transport

technologies which ideally fulfill certain

requirements. Scalability should range from Gbit/s

to Tbit/s total capacity, per-channel bit rate should

range from several Mbit/s to 40Gbit/s today with

100Gbit/s on the horizon and service flexibility

should range from Fast Ethernet via Gigabit

Ethernet (GbE) and 10GbE to OC-768 PoS and

ultimately 100GbE in the future. Distances ranging

from intra campus requirements to thousands of

kilometers and management concepts (e.g.

centralized management, distributed GMPLS control

plane) are requirements that should be currently met

in educational networks.

There was designed and developed an e-Learning

platform called Tesys [1]. This platform has

implemented facilities for following type of users:

system administrators, secretaries, professors and

students. Some activities implemented for students,

like downloading course materials or taking tests or

exams are sometimes very heavy regarding the

computational load of the server and the data traffic

transfer to and from the user.

This paper presents the structure and functionality of

an Expertise Module (EM) that runs along the Tesys

e-Learning platform. The main purpose the EM is to

provide the intelligent character for the educational

network implemented by Tesys. The functionality of

the EM module is presented in Figure 1.

Figure 1. General structure of Educational Network

As presented in Figure 1 the input of EM is

represented by data traffic data. The data are

obtained by a custom implemented logging

mechanism embedded within the platform’s

business logic. The platform is represented by the

setup put in place in order to perform all necessary

activities within the e-Learning process. The setup

consists of course materials, test and exam quizzes

that are set up by course managers and the overall

setup performed by secretaries.

The data traffic is saved into structured format and

after that it is fed to the Expertise Module. Once the

EM is initialized, it can provide data back to Tesys

e-Learning platform in the form of a response to

specific requests. Within EM, there are two

problems that are addressed.

One refers to employed business logic within the

Expertise Module. This problem is considered from

two points of view. One is from the point of view of

the general architecture of EM and the other is from

the point of view of analysis process itself.

6th WSEAS International Conference on EDUCATION and EDUCATIONAL TECHNOLOGY, Italy, November 21-23, 2007 237

Figure 2. Detailed functionality of Expertise Module and integration with Tesys e-Learning platform

The second problem refers to the architecture of EM

as a service. Once the EM has been instantiated it

will work as a service for Tesys e-Learning

platform. Under these circumstances the Intelligent

Educational Network is represented by the

combination of the Tesys platform and the Expertise

module.

The activity of a student is seen as a sequence of

sessions. A session starts when the student logs in

and finishes when the student logs out. A session is

represented by a sequence of actions. The next

figure presents the activity diagram from platform

point of view. Within the platform each student has

an associated activity diagram.

Figure 3. Activity diagram for students

In the diagram it may be seen the activity of all s

users (U1,, U2, …, Us). The activity of each user is

composed of a number of sessions. User Us in the

diagram has ms associated sessions. At finest level,

a session is composed of a number of actions,

session Sms has mn associated actions. In a session,

the first action is to login and the last one is logout.

After one hour of inactivity the user is automatically

logged out such that user sessions can be precisely

determined. The notion of “user session” was

defined as being a temporally compact sequences of

Web accesses by a user. A new distance measure

between two Web sessions that captures the

organization of a Web site was also defined. The

goal of Web mining is to characterize these sessions.

In this light, Web mining can be viewed as a special

case of the more general problem of knowledge

discovery in databases.

Still, in performed experiments there were taken into

consideration heavy traffic sessions. In this light, a

session becomes more or less a time interval in

which a user performs many requests as a part of a

certain e-Learning activity. For example, taking a

test is a heavy traffic session. Within a session there

may be many heavy traffic sessions. For such

sessions there was monitored the quantity of

transferred data, the duration of the session and

other information regarding that session like the user

who performed the actions and the accessed

resources. This data represent the raw data that is

used as input in the analysis process.

Under these circumstances, a more detailed

functionality diagram of Expertise Module is

6th WSEAS International Conference on EDUCATION and EDUCATIONAL TECHNOLOGY, Italy, November 21-23, 2007 238

presented in Figure 2. The EM is basically an

application that functions as a service for Tesys e-

Learning platform. Its main goal is to decrease the

response time of the platform by caching data in an

intelligent way, increase reliability and provide

efficient resource management. The intelligent

feature of caching is given by the mechanisms

implemented within the EM: clustering,

mathematical modeling and data caching.

The Expertise Module has as input the data traffic

data and the data from the database.

All these data populates the users-data traffic-

activity table. All data regarding users represent

features (parameters) that define each instance

(user). The instances enter a clustering process such

that students with a high degree of similarity are

grouped together. The data traffic transferred within

each cluster is mathematically modeled and needed

data is inserted into a cached data structure. The

logic implemented in Cached Data Structures

Access Logic is also responsible for interfacing with

the business logic of the platform. The

communication is accomplished in a client-server

architecture. When the business logic of Tesys needs

specific data it firstly sends a request to Expertise

Module and more exactly to Cached Data Structures

Access Logic. If requested data is not found than

classical way of obtaining it is used.

There are many different ways for representing pat-

terns that can be discovered by machine learning.

From all of them we choose clustering, which is the

process of grouping a set of physical or abstract

objects into classes of similar objects [2]. Basically,

for our plat-form we create clusters of users based

on their activity and data traffic.

As a product of clustering process, associations

between different actions on the platform can easily

be inferred from the logged data. In general, the

activities that are present in the same profile tend to

be found together in the same session. The actions

making up a profile tend to co-occur to form a large

item set [3].

There are many clustering methods in the literature:

partitioning methods such as [9], hierarchical

methods, density-based methods such as [6], grid-

based methods or model-based methods.

Hierarchical clustering algorithms like the Single-

Link method [4] or OPTICS [5] compute a

representation of the possible hierarchical clustering

structure of the database in the form of a

dendrogram or a reachability plot from which

clusters at various resolutions can be extracted, as

has been shown in [7]. From all of these we chose to

have a closer look on partitioning methods.

After creating clusters of users based on their

activity and transferred data, the data traffic

transferred within each cluster is taken into

consideration by Mathematical Modeling Module

which in fact estimates the value of H Parameter. As

a matter of precaution the mathematical modeling

starts only when clustering process has reached a

certain level of accuracy. Mathematical Modeling

module will estimate three plots: R/S plot, Variance-

Time plot and the Periodogram plot. Once the value

of H parameter is over a threshold (e.g. 0.8) data

may be cached into the Cached Data Structures. This

is the place where important data is stored and is

ready to be accessed by Tesys e-Learning platform.

The Cached Data Structure implements a dynamical

data structure used for managing in main memory

the data that is available for deployment through the

Tesys e-Learning Platform. For implementing this

structure there are used AVL trees [8,9]. A AVL tree

is a self-balancing binary search tree. In an AVL

tree the heights of the two child subtrees of any node

differ by at most one, therefore it is also called

height-balanced. Lookup, insertion, and deletion all

take O(log n) time in both the average and worst

cases. Additions and deletions may require the tree

to be rebalanced by one or more tree rotations.

2 Tesys e-Learning Platform
The main goal of the application is to give students

the possibility to download course materials, take

tests or sustain final examinations and communicate

with all involved parties. To accomplish this, four

different roles were defined for the platform:

sysadmin, secretary, professor and student.

The main task of sysadmin users is to manage

secretaries. A sysadmin user may add or delete

secretaries, or change their password. He may also

view the actions performed by all other users of the

platform. All actions performed by users are logged.

In this way the sysadmin may check the activity that

takes place on the application. The logging facility

has some benefits. An audit may be performed for

the application with the logs as witness. Security

breaches may also be discovered.

2.1 Main Functionalities and Architecture
Secretary users manage sections, professors,

disciplines and students. On any of these a secretary

may perform actions like add, delete or update.

 These actions will finally set up the application such

that professors and students may use it. As

conclusion, the secretary manages a list of sections,

a list of professors and a list of students. Each

discipline is assigned to a section and has as

attributes a name, a short name, the year of study

6th WSEAS International Conference on EDUCATION and EDUCATIONAL TECHNOLOGY, Italy, November 21-23, 2007 239

and semester when it is studied and the list of

professors that teach the discipline which may be

maximum three. A student may be enrolled to one or

more sections.

The main task of a professor is to manage the

assigned disciplines while s discipline is made up of

chapters. The professor sets up chapters by

specifying the name and the course document. Only

students enrolled in a section in which a discipline is

studied may download the course document and take

tests or examinations. Besides setting up the course

document for each chapter, the professor manages

test and exam questions.

Tesys application offers students the possibility to

download course materials, take tests and exams and

communicate with other involved parties like

professors and secretaries.

Students may download only course materials for

the disciplines that belong to sections where they are

enrolled. They can take tests and exams with

constraints that were set up by the secretary through

the year structure facility.

Students have access to personal data and can

modify it as needed. A feedback form is also

available. It is composed of questions that check

aspects regarding the usability, efficiency and

productivity of the application with respect to the

student’s needs.

 The e-learning platform consists of a framework on

which a web application may be developed. On

server side we choose only open source software

that may run on almost all platforms. To achieve this

goal Java related technologies are employed. In

figure 2 we present the most general view of the

software architecture from MVC point of view.

Figure 4. MVC architecture of the Tesys e-Learning platform

This architecture of the platform allows

development of the e-learning application using

MVC architecture. This three-tier model makes the

software development process a little more

complicated but the advantages of having a web

application that produces web pages in a dynamic

manner is a worthy accomplishment. The model is

represented by DBMS (Data Base Management

System) that in our case is represented by MySQL.

2.2 Data Traffic Logging Mechanisms
In this part we shall focus on describing the

monitoring capabilities of the platform when

running. The platform implements two ways of

monitoring activity. Since business logic is

implemented in Java, the log4j utility package was

chosen to be used in order to log specific events.

The next lines present how the utility was set up.

log4j.appender.R.File=D:/Tomcat/idd.log

log4j.appender.R.MaxFileSize=1000KB

log4j.appender.R.MaxBackupIndex=5

These lines state that all the logging process will be

done in idd.log file and will have a maximum file

size of 1000KB in maximum five files.

This utility package is also used in debugging

process and the logs may be very useful in finding

security breaches like unsuccessful attempts to log

in or run actions that are not allowed.

The main disadvantage of this technique is the semi

structured way in which information is stored. This

makes the information retrieval and analysis to be

not so easy.

The second method of monitoring user activity

within the platform is through a database table

called activity. In this table a record is added each

time a user performs an action. In the next table it is

presented the structure of activity table.

Field Description

id primary key

userid identifies the user who performed the action

date stores the date when the action was performed

action stores a tag that identifies the action

details stores details about performed action

level specifies the importance of the action

Table 1. Structure of activity table

The details field stores specific information

regarding the action that was executed. For example,

if a secretary modifies the profile of a student in the

details field there will be stored information about

what fields were updated.

The level field specifies the importance of the

executed action. There are defined three level of

importance: 0,1 and 2 where level 0 specifies the

critical actions.

So far, in activity table there are close to 40,000

recorded actions in almost four month of running the

platform. At the end of the cycle there are expected

almost 100,000 recorded actions.

6th WSEAS International Conference on EDUCATION and EDUCATIONAL TECHNOLOGY, Italy, November 21-23, 2007 240

3 The Expertise Module

The Expertise Module implements the classical

steps of classical clustering presented in figure 5

[10]. Clustering produces initial categories in which

values of a data set are classified during the

classification process.

 From all clustering algorithms categories we chose

to have a closer look on those that use partitioning

methods. Firstly, k-Means algorithm is taken into

consideration since is simple and straight forward.

That is why fuzzy C-means algorithm was

employed. The procedure follows the standard

knowledge discovery [10] but is accustomed for our

specific situation.

Figure 5. Steps for clustering process

k-Means algorithm works for a database of n objects

and k, the number of clusters to form, a partitioning

algorithm that organizes the objects into k partitions

(k<n), where each partition represents a cluster.

The clusters are formed to optimize an objective

partitioning criterion, often called similarity

function, such as distance, so that objects within a

cluster are “similar”, whereas the objects of different

clusters are “dissimilar” in terms of database

attributes. So, the first step is to define a list of

attributes that may be representative for modeling

and characterizing student’s activity.

 The classic k-means algorithm is a very simple

method of creating clusters. Firstly, it is specified

how many clusters are being thought: this is the

parameter k. Then k points are chosen at random as

cluster centers. Instances are assigned to their

closest cluster centre according to he ordinary

Euclidean function. Next the centroid, or the mean,

of all instances in each cluster is calculated – this is

the “means” part. These centroids are taken

to be the new centre values for their respective clus-

ters. Finally, the whole process is repeated with the

new cluster centers. Iteration continues until the

same points are assigned to each cluster in

consecutive rounds, at each point the cluster centers

have stabilized and will remain the same thereafter

[3]. From a different perspective for a cluster

there may be computed the following parameters:

n

xxx n+++
=

...21µ , the means

 () () ()
1

...
22

2

2

1

−

−++−+−
=

n

xxx n µµµ
σ , the standard

deviation

p, the probability

 The sum of all probabilities for all clusters is 1. If

we know which of the distributions each instance

came from, finding the parameters is easy. On the

other hand, if the parameters are known finding the

probabilities that a given instance comes from each

distribution is easy. Given an instance x , the

probability that it belongs to clus-ter A is:

]Pr[

),;(

]Pr[

]Pr[]|Pr[
]|Pr[

x

pxf

x

AAx
xA AAA σµ

=
−

=

Where),;(AAxf σµ is the normal distribution

function for cluster A, that is:
()

2

2

2

2

1
),;(σ

µ

σπ
σµ

−
−

=

x

AA exf

 The EM algorithm takes into consideration that we

know neither of these things: not the distribution

that each training instance came from, nor the

parameters µ, σ or the probability. So, we adopt the

procedure used for the k-means clustering algorithm

and iterate. Start with initial guess for the five

parameters, use them to calculate the cluster

probabilities for each instance, use these

probabilities to estimate the parameters, and repeat.

This is called the EM algorithm for “expectation-

maximization”. The first step, the calculation of

cluster probabilities (which are the “expected” class

values) is “expectation”; the second, calculation of

the distribution parameters is “maximization” of the

likelihood of the distributions given the data [3].

 Although the EM algorithm is guaranteed to

converge to a maximum, this is a local maximum

and may not necessarily be the same as the global

maximum. For a better chance of obtaining the

global maximum, the whole procedure should be

repeated several times, with different initial guess

for the parameter values. The overall log-likelihood

figure can be used to compare the different final

configuration obtained: just choose the largest of the

local maxima [3].

6th WSEAS International Conference on EDUCATION and EDUCATIONAL TECHNOLOGY, Italy, November 21-23, 2007 241

Within the Expertise Module the mathematical

modeling is accomplished by estimating the self-

similarity and long-range dependence character of

data traffic [12, 13 and 14]. A process is considered

to be self-similar if Hurst parameter satisfies the

condition:

10,0,0)()(<<>>=
−

HatatYatY
H

where the equality is in the sense of finite-

dimensional distributions. A second definition of

self-similarity that is more appropriate in the context

of standard time series, involves a stationary

sequence }1),({ >= iiXX . Let

,...2,1,)()/1()(
1)1(

)(== ∑
+−=

kiXmkX
km

mki

m

It is not possible to use the definition to check

whether a finite traffic trace is self-similar or not.

Instead different features of self-similarity such as

slowly decaying variances are investigated in order

to estimate the Hurst parameter H.

Parameter H can take any value between 1/2 and 1

and the higher the value the higher the degree of

self-similarity. For smooth Poisson traffic the value

is H=0.5. There are four methods are used to test for

self-similarity. These four methods are all heuristic

graphical methods, they provide no confidence

intervals and they may be biased for some values of

H. The rescaled adjusted range plot (R/S plot), the

Variance-Time plot and the Periodogram plot, and

also the theory behind these methods, are described

in detail by Beran [15] and Taqqu et al. [14]. Molnar

et al. [16] describes the index of dispersion for

counts method and also discuss how the estimation

of the Hurst parameter can depend on estimation

technique, sample size, time scale and other factors.

The Expertise Module has also implemented the

logic responsible for managing the data that is to be

retrieved to Tesys platform at request. In this

prototype implementation there were implemented

the basic operations on the AVL tree structure:

insertion, look-up and deletion.

The reason for choosing the AVL tree data structure

is because it has the advantage of being simpler to

implement than other self-balancing binary search

trees, such as red-black trees or multiway trees like

B-trees or T-Trees while their average-case

performance is just as efficient.

Since the implemented operations are the classic

ones the node structure has an very important role.

Table 2 presents the structure of a node from the

AVL tree structure.

Field Description

activityId key-identifies the performed activity

metaInfo meta information regarding the performed

activity

userId identifies the user who performed the actions

within the session

date stores the date when the actions were

performed

data stores the data

Table 2. Structure of node from the AVL tree

The activityId field is the key of the structure.

Whenever a user starts performing a specific activity

than this activity is looked-up in the Cached Data

Structure. The metaInfo field holds information

specific to performed actions. For example, in the

case of a DOWNLOAD action in the metaInfo field

there will be stored information regarding the time

duration of the session, the average data traffic

speed in bytes/second and data about the assets

involved (file names, sizes, locations, etc.) The

userId field is a foreign key that identifies the user

who performed the actions within the heavy traffic

session. The date field records when the actions

were performed and the data field holds the

important data that is to be retrieved to Tesys e-

Learning platform at request.

The managing is performed by Cached Data

Structure Access Logic. This business logic

interfaces with Data Model Logic for insertion and

with the logic of Tesys for look-up and deletion.

Whenever a call for look-up data within the Cached

Data Structure this is accomplished firstly according

to activityId field. Once the correct activity has been

identified than the metaInfo field is inspected. When

the needed data matches regarding the looked asset

the data is then retrieved to Tesys e-Learning

platform for deployment.

4 Experimental Results
The study started by setting up the Tesys e-Learning

platform. This means that all the learners, course

managers and secretary accounts have been created

and the platform was populated with data: course

materials, test and exam questions.

This platform is currently in use and has three

sections and at each section, four disciplines.

Twelve professors are defined and more than 650

learners. At all disciplines, there are edited almost

2500 questions. In the first month of usage, almost

500 tests were taken. In the near future, the expected

number of learners may be close to 1000.

Recording learner’s activity under these

circumstances provides great information regarding

user traffic. After six month of usage, there are more

than 40,000-recorded actions.

Once the platform was up and running the Expertise

Module started receiving data regarding users, user’s

6th WSEAS International Conference on EDUCATION and EDUCATIONAL TECHNOLOGY, Italy, November 21-23, 2007 242

traffic and user’s performed actions. As presented,

each user represents an instance for the clustering

process and is represented by a set of parameters.

 After the parameters (features) have been set they

are computed. In Figure 5 this step is named Feature

Selection and produces the Data for process. Data is

represented by the whole history of all users which

may be found in relations of the database (e.g.

activity, exam results, test results, messages, etc.)

and in semi structured log files. The Feature

Selection will produce the set of instances

(sometimes called points) that will represent the

input for Clustering Algorithm Selection. Depending

on algorithm a number of clusters is obtained each

instance being assigned to one or more clusters.

 Validation of results produces the final clusters that

implement the model. The validation procedure has

two main outcomes: firstly it proves the correctness

of results for current dataset and gives an idea of

how the model will perform on new data.

 In the next paragraphs there will be described in

detail the whole process of knowledge discovery.

Everything starts with the data from the database of

the e-Learning platform.

 The database of the platform contains 21 relations.

Among the most important ones are: user, role,

userrole, usersections, sections, questions,

testquestions, exam-questions, test-results, exam-

results, messages and activity.

 The preparation gets data from the database and puts

it into a form ready for processing of the model.

Since the processing is done using machine-learning

algo-rithms implemented in Weka workbench [11]

and custom implementation, the output of

preparation step is in the form of an arff file. Under

these circumstances, we have developed an offline

Java application that queries the platform’s database

and crates the input data file called activity.arff. This

process is automated and is driven by a property file

in which there is specified what data/attributes will

lay in activity.arff file.

 The most important step in this procedure is the

attribute selection and the granularity of their

nominal values. The number of attributes and their

meaning has a cru-cial importance for the whole

process since irrelevant attributes may degrade

classification performance in sense of relevance. On

the other hand, the more attributes we have the more

time the algorithm will take to produce a result.

Domain knowledge and of course common sense are

crucial assets for obtaining relevant results.

 For a student in our platform we may have a very

large number of attributes. Still, in our procedure we

use only three: the number of loggings, the number

of taken tests and the number of sent messages. Here

is how the arff file looks like:

@relation activity

@attribute nLogings {0,<10,<50,<70,<100,>100}

@attribute nTests{0,<10,<20,<30,<50,>50}

@attribute noOfSentMessages

{0,<10,<20,<30,<50,>50}

@data

<50,<10,<10,

<50,<20,0,

<10,<10,0,

 As it can be seen from the definition of the attributes

each of them has a set of five nominal values from

which only one may be assigned. The values of the

attributes are computed for each of the 650 students

and are set in the @data section of the file. For

example, the first line says that the student logged in

less than fifty times, took less than ten tests and sent

less than ten messages to professors.

In order to obtain relevant results we pruned noisy

data. We considered that students for which the

number of loggings, the number of taken tests or the

number of sent messages is zero are not interesting

for our study and degrade performance and that is

why all such records were deleted. After this step

there remained only 268 in-stances.

 Running the EM algorithm from Weka package

created three clusters. The procedure clustered 91

instances (34%) in cluster A, 42 instances (16%) in

cluster B and 135 instances (50%) in cluster C. The

following table shows in which cluster the instances

belong after running the EM algorithm.

Instance Cluster

A

Cluster

B

Cluster

C

1 1 0 0

2 1 0 0

3 0 1 0

……. … …. …

268 0 0 1
Table 2. Distribution of instances after EM algorithm

For estimation of Hurst parameter there was chosen

a 3 hours interval, between 18:00 and 21:00 which is

considered to be a heavy traffic period.

The interval from 18:00 to 21:00 was chosen for

close analysis. The R/S plot estimated H parameter

to a value of 0.89. The time-variance plot showed a

slope of -0.320 which means a value of H of

1+slope/2=0.84. The IDC (Index of Dispersion for

Counts) shows an H parameter of 0.88. In

Periodogram plot there may be observed a value of

H = 0.85. These methods do not obtain exactly the

same values but values are over 0.5 which is a good

indication of traffic’s self-similarity. Having in mind

6th WSEAS International Conference on EDUCATION and EDUCATIONAL TECHNOLOGY, Italy, November 21-23, 2007 243

that non-stationary traffic may be easily taken as

self-similar stationary traffic there were also

examined smaller intervals of time bins. H

parameter was estimated for each of the 6 intervals

of 30 minutes between 18:00 and 21:00. In this way,

there was estimated H parameter for three hours

from a complete interval of 24 hours.

The fact that traffic is found to be self-similar does

not change its behavior but it changes the

knowledge about real traffic and also the way in

which traffic is modeled. It has lead many [17] to

abandon the Poisson-based modeling of network

traffic for all but user session arrivals. Real traffic,

well described as self-similar, has a “burst within

burst” structure that cannot be described with the

traditional Poisson-based traffic modeling.

After another three month of running the Cached

Data Structure reached a number of almost 800

nodes and a size of almost 250 MB. From this point

we started to study how response time is influenced

by the employed architecture. There was build a

mechanism that performed two requests virtually at

the same time: one for normal retrieval of data from

the hard drive and one that looked up for the data

within the cached data structure. The results are

good, especial at subsequent similar requests, due to

time locality of data. Table 3 presents the obtained

results for three situations.

Activity meta info Normal

access

time

retrieval

Cached

access

time

retrieval

Difference

DOWNLOAD materieId = 7

courseId=5

chapterId=3

size=5MB

0.9 s

0.78 s

-13.3%

DOWNLOAD materieId = 10

courseId=1

chapterId=2

size=3MB

0.8 s

0.67 s

-16,25%

DOWNLOAD materieId = 6

courseId=3

chapterId=5

size=0.9MB

0.6 s

0.65 s

+8.3%

Table 3. Experimental measurements – comparison between normal

access and cached access

The experimental results showed in general a

decrease in access time. Still, there are some

situations then the response time is greater when the

response is delivered through Expertise Module.

This is the situation when the overhead introduced

by auxiliary logic of Data Retrieval Module is

greater that the normal retrieval. The worst-case

time situation showed an overhead of 35% over the

normal access while best-case time situation showed

an improvement of 30%. The average-case

performance shoed a general decrease in access time

retrieval of 13.5 percent.

4 Conclusions

This paper presents an Expertise Module that runs

along an e-Learning platform and whose goal is to

decrease the access time of users to assets, increase

reliability and enhance resource access and

management. This module was divided into three

levels of analysis: clustering, mathematical

modeling and data caching. The first level creates

clusters of students based on their performed

activities and transferred data traffic. At this level

there is used EM clustering algorithm implemented

by Weka system. The user clustering process

produced three clusters of users.

The mathematical traffic modeling was performed

on data obtained for users that belong to a certain

cluster. Once the clusters are created the data traffic

transferred by students that belong to a cluster of

students is analyzed for self-similarity.

Mathematical modeling estimates the self-similarity

of data traffic. This is accomplished by heuristic

graphical methods: R/S plot, variance-time plot,

IDC plot, periodogram plot. The analysis is

performed rigorously for a three hours interval, from

18:00 to 21:00 but also for the whole day.

All the analysis follows a proposed analysis process

that has as input data regarding executed actions and

transferred bytes within the platform and has as

output estimates of the Hurst parameter.

Values found for Hurst parameter are very

promising. All calculations showed values above 0.7

and many times above 0.8 which indicate a good

level of self-similarity.

The differences regarding Hurst parameter are due

to estimation method, bin size and point of time.

When this characteristic is met than the data is

inserted into the cached data structure represented

by a dynamic structure, more precisely an AVL tree.

The Expertise Module provides data for Tesys e-

Learning platform from the AVL tree as requested.

A AVL tree structure is used as caching data

structure. This is mainly performed to obtain data in

timely manner.

The Expertise Module has been tested on data

obtained from the e-Learning platform on which 650

learners were enrolled and had activity for six

month. The results are satisfactory and prove that

the Expertise Module can be successfully used in an

e-Learning process for decreasing the time response.

6th WSEAS International Conference on EDUCATION and EDUCATIONAL TECHNOLOGY, Italy, November 21-23, 2007 244

The Expertise Module is planned for running on the

same e-Learning platform (same disciplines and

same test and exam questions) but on different set of

learners. This may lead to further and continuous

improvement of the system.

The Expertise Module may also run near other

evaluation environments in order to decrease the

time response. Within each module there may be

used different machine learning techniques or data

structures such that different setups may be tested.

References:

[1] Burdescu, D.D., Mihăescu, M.C., 2006. Tesys:

e-Learning Application Built on a Web Platform.

Proceedings of International Joint Conference on

e-Business and Telecommunications. Setubal,

Portugal, pp. 315-318.

[2] Jiawei Han, Micheline Kamber “Data Mining –

Concepts and Tech-niques” Morgan Kaufmann

Publishers, 2001.

[3] Ian H. Witten, Eibe Frank “Data Mining –

Practical Machine Learning Tools and

Techniques with Java Implementations” Morgan

Kaufmann Publishers, 2000.

[4] Ester M., Kriegel H.-P., Sander J., Xu X.: “A

Density-Based Algo-rithm for Discovering

Clusters in Large Spatial Databases with Noise”,

Proc. KDD’96, Portland, OR, pp.226-231,1996.

[5] Sander, J., Qin, X., Lu, Z., Niu, N, Kovarsky, A.

Automated Extrac-tion of Clusters from

Hierarchical Clustering Representations.

PAKDD’03.

[6] Nasraoui O., Joshi A., and Krishnapuram R.,

“Relational Clustering Based on a New Robust

Estimator with Application to Web Mining,”

Proc. Intl. Conf. North American Fuzzy Info.

Proc. Society (NAFIPS 99), New York, June

1999.

[7] R. Agrawal and R. Srikant, “Fast algorithms for

mining association rules,” Proc. of the 20th

VLDB Conference, pp. 487-499, Santiago,

Chile, 1994.

[8] G. Adelson-Velskii, E.M. Landis, 1962. An

algorithm for the organization of information.

Doklady Akademii Nauk SSSR, 146:263–266,

(Russian). English translation by Myron J. Ricci

in Soviet Math. Doklady, 3:1259–1263, 1962.

[9] Donald Knuth. The Art of Computer

Programming, Volume 3: Sorting and Searching,

Third Edition. Addison-Wesley, 1997. ISBN 0-

201-89685-0. Pages 458–475 of section 6.2.3:

Balanced Trees. Note that Knuth calls AVL trees

simply "balanced trees".

[10] Fayyad, M.U., Piatesky-Shapiro, G., Smuth P.,

Uthurusamy, R., Advances in Knowledge

Discovery and Data Mining. AAAI Press., 1996.

[11] www.cs.waikato.ac.nz/ml/weka

[12] W. Willinger, M. S. Taqqu, R. Sherman, and

D. Wilson, “Self-similarity through high-

variability: statistical analysis of Ethernet LAN

traffic at the source level,” in Proceedings of

SIGCOMM ‘95, pp. 100-113.

[13] W. Willinger, V. Paxson and M.S. Taqqu,

“Self-similarity and heavy tails: structural

modeling of network traffic,” in A practical

guide to heavy tails: statistical techniques and

applications, R. Adler, R. Feldman and M.S.

Taqqu, Eds. Birkhauser, Boston, 1998.

[14] M. S. Taqqu and V. Teverovsky, “On

estimating the intensity of long-range

dependence in finite and infinite variance time

series,” in A practical guide to heavy tails:

statistical techniques and applications, R. Adler,

R. Feldman and M.S. Taqqu, Eds. Birkhauser,

Boston, 1998.

[15] J. Beran. Statistics for Long-Memory

Processes. Chapman & Hall, New York, 1994.

[16] S. Molnar, A. Vidacs and A. Nilsson,

“Bottlenecks on the Way Towards Fractal

Characterization of Network Traffic: Estimation

and Interpretation of the Hurst Parameter”.

International Conference on the Performance and

Management of Communication Network,

Tsukuba, Japan, 17-21 November 1997.

[17] V. Paxson and S.Floyd, “Wide-area traffic: The

failure of poisson modeling,” in IEEE/ACM

Transactions on Networking, vol. 3, no. 3, pp.

226-244, 1995.

6th WSEAS International Conference on EDUCATION and EDUCATIONAL TECHNOLOGY, Italy, November 21-23, 2007 245

