
Web Service Usage Mining: Mining For Executable Sequences

MOHSEN JAFARI ASBAGH†§, HASSAN ABOLHASSANI§
† ISIRAN

Center of Research and Development
in Basic Systems

Tehran
IRAN

§ Computer Engineering Department
Sharif University of Technology

Azadi Ave., Tehran
IRAN

Abstract: As service world becomes bigger, behavior of people in this world becomes interesting and analysis of
usage sequences can yield useful information about web services and the way they are used. Application of data
mining and web mining techniques in the field of web services is introduced in order to discover interesting patterns
among web services usage and interactions. In this paper, we introduce the concept of the executable sequence of the
web service operations and propose an efficient algorithm for mining sequential patterns among these sequences
which shows good performance regarding basic sequential pattern discovery algorithm.

Key-Words: Data Mining, Sequential Pattern Analysis, Web Service, Web Service Usage Mining, Executable
Sequence, Frequent Pattern Discovery.

1 Introduction
Using web services in various business areas such as e-
commerce and e-business is getting more popular and
services provided by different providers can be used by
intended users all around the world. As the ability of the
web service technology in the fulfillment of the needs of
the IT world becomes increased, more users get
encouraged to import this approach in their personal
activities such as hotel reservation and their
technological activities such as business automation.
This increase in the use of the web services, forces web
service providers to enter in a competitive race in
producing and providing more and more services in
order to achieve success and gain potential benefits. In
this way, every approach which help service providers
to better understand market trends and help users to
better know what is accessible to use, is considered as a
source of power for users as well as providers and
consequently helps the web service technology to reach
success.

One approach that can be helpful in this way is to
apply data mining and web mining techniques in various
fields of web service area which provides ability to
analyze patterns and behaviors in a web service
community. The application of various data mining
techniques in the field of the web service is investigated
in [1]. Q. A. Liang et al. named application of data
mining techniques in the field of the services as Service
Mining [2].

Sequential pattern analysis initiated by Agrawal in [3]
is one of the data mining techniques which mines

frequent sequential patterns in time series database. In
the web service literature, sequential pattern analysis
can be applied in order to find sequences of web service
operations which are called by web service users. This
yields in hand knowledge about the patterns of interests
among service users and indicates that which services
have high correlation with each other. This knowledge
can provide decision makers with useful information
which in turn can guide them to make important
decisions.

Sequential pattern mining among web service
operations is one of the tasks of the web service usage
mining –borrowed from web usage mining in the field
of web mining [4]. Searching for these sequential
patterns is done through logs made by service hosts
from the usage of the web services. There is not such a
log yet, but we hope that it will be provided in a close
future.

In this paper, we suggest AprioriAll algorithm [3]- [5]
as a basic algorithm for mining frequent sequences of
web service operations. Also the appropriate log format
on which this algorithm can work is proposed. We also
introduce the concept of executable sequence of web
service operations as a special web service usage
sequence in which the succedent operation in the
sequence uses output of the precedent operation as one
of its inputs. In order to mine sequential patterns in
executable sequences, we make an improvement on the
basic algorithm via some optimizations that can help to
get better timing in the execution of the mining
algorithm.

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 266

The remainder of this paper is structured as follows.
Section 2 addresses the motivation against executable
sequence pattern analysis. In section 3, we first propose
a log format for recording the usage of the web service
operations, and then we introduce a basic algorithm for
mining sequential pattern in the web service log.
Section 4 contains our improved algorithm for mining
sequential patterns among executable sequences.
Section 5 presents some experiments and evaluation of
our algorithm. Some related works are appeared in
section 6 and section 7 states the conclusions and future
works.

2 Motivation
Automated web service composition has taken much
effort in recent years [6]-[7]. Q. A. Liang et al. propose
a way toward web service composition based on users
query via solving constraint satisfaction problem [2]. In
their solution, service operations are represented in a
template in which each node is a class of operations
which have the same signature. In each composition
candidate, one operation from each node can be
selected. After that, candidate sequences of the
operations are investigated in order to detect potential
conflicts on their constraints. If such conflicts exist, the
sequence is removed from the candidates.

Even though we succeed in discarding inconsistent
sequence of the operations, what we should do if those
remained possible choices be more than one? The
authors don’t address how to treat with this condition.

We believe that one approach in this situation is that a
user based on the information which is provided by the
service vendor, makes a choice best matching his/her
needs. Feedbacks from these decisions can be used in
order to provide prospective users with
recommendations to make appropriate choices.

Here is where our executable sequential pattern
mining can be helpful. Every possible choice of the user
is an executable sequence. If our proposed executable
sequential pattern mining algorithm be applied to the
log of the previous executions, it can mine frequent
executable sequences. Then, the possible choices can be
ranked based on these frequent patterns and can be
recommended to the user.

3 Web Service Usage Mining via
Sequential Pattern Analysis
Web service usage mining is the discovery of interesting
patterns among web service usage log. Usage patterns
are the styles of the usage which occur frequently and
indicate specific patterns of interest and high degree of
co-occurrence between web services or web service

operations. We put our focus on correlation between
web service operations and we try to discover frequent
sequence of web service operation calls.

Before any algorithm is developed in this context, an
appropriate usage log must be at hand. Since such a log
does not exist yet, first we introduce a format for the
entries of the usage log of the web services that gives us
sufficient information in our way to analayze patterns.
Then, the AprioriAll algorithm [3]- [5] is rewritten with
some minor changes to give it the ability of the
operation over web service usage log.

3.1 Usage Log of Web Services
Since we are looking for the sequences which frequently
occur in web service usage sessions (e.g. the interval
starting at the time of the connection of a user or
composition engine to web service host until the
disconnection from it), sufficient information must be
embedded in log entries in order to identify the user
sessions. In addition, each log entry has to contain the
information about the operation within the target web
service which is called. We put all of these together and
propose a structure for the log entries.

Each session starts and ends with begin and end
entries respectively. When a session begins, an
identifier –sessionID- is assigned to it which refers to
that session and all the entries contained in it. In
addition to these data items, the user of the session
(session initiator) and the time of the session entries are
also included. The proposed format for the begin and
end entries is as follows:

[begin | end] – sessionID – user – timestamp

During the life time of a session, each entry includes
the sessionID to identify the session to which the entry
belongs. Two other data items that are contained in each
log entry are the web service that is used -service- and
the operation called within it (operation). A timestamp
is also included in each entry. The structure of this entry
is as follows:

sessionID – service – operation – timestamp

3.2 Sequential Pattern Mining within Service
Usage

The AprioriAll algorithm [3]- [5] which has been
developed for mining the sequential patterns among
transactional data can be used as a basic algorithm for
analyzing the web service usage and discovering the
interesting usage patterns. The rewritten algorithm has
been shown in Fig.1.

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 267

Fig.1. Basic sequential pattern analysis algorithm among
web service usage log.

A sequential pattern in a web service usage log
denotes an ordered list of the web service operations
that its occurrence count exceeds a specific threshold. In
other words, its support must be higher than a threshold.
This threshold is the input of this algorithm.

Apriori-gen procedure generates k-itemset (sequence
of k operations) candidates by means of joining frequent
sequences with length k-1. Those two sequences with
length k-1 can be joined that either has just one different
operation in the same position or the first k-2 items of
one sequence be exactly the same as the last k-2 items
of the other one. In case of the former condition, join
operation returns two operation sets. This is a result of
the fact that two different operations in the sets to be
joined can be combined in two different orders and both
of these orders must be added to candidate set.

4 Executable Sequential Pattern
Analysis
In the data mining area, when talking about the data, we
mean a huge collection of the naive data that contains
millions of data records. Any process or lookup in such
a huge data collection is a time and resource consuming
task. Considering this situation, it’s straightforward to
guess that the major effort taken in the mining for
sequential patterns belongs to searching through the
data set in order to determine frequent k-itemsets among
the candidate item sets. As stated, since searching in the
large collection of the data is a time consuming task, the
larger the size of the candidate set, the longer time the
sequential pattern mining algorithm takes. Therefore,
one way to improve the performance of such algorithms
is to make reduction in the size of the candidate set.

When looking for the frequent executable sequences,
we can detect that some sequences can’t be frequent
without searching in the data collection. We earlier
introduced the concept of the executable sequence for
web service operations as a sequence of web service
operations that the output of the prior operation is
consumed by the subsequent operation. Therefore the
output of the prior service operation and one of the
inputs of the subsequent one should be compatible.
When there is no such compatibility between two web
service operations in a specific order, we’ll be sure that
those two operations will not appear in that order within
a session.

Using this heuristic, we can modify Apriori-gen
procedure in such a way that when trying to join two
operation sets, it checks whether the result of the join is
an executable sequence or not. If the result is positive, it
is added to candidate sets and otherwise it is discarded.
This modification results in reduction in the size of the
candidate set and yields improvement in the execution
time of the mining algorithm. We call such a join
operation as enhanced-join operation.

We developed the executable sequential patterns
mining algorithm based on the idea mentioned above
which its Improved-Apriori-gen procedure has been
shown in Fig.2. The other parts of the algorithm are the
same as the presented algorithm in Fig.1. Within
Improved-Apriori-gen procedure, it is possible that one
or both of the sets returned by enhanced-join operation
be empty which indicates that the corresponding
sequence was not an executable sequence.

Algorithm WUM-SequentialPatterns
Input:
U: Web service usage log
min_support: Minimum support
Output:
Set of frequent sequences
Steps:
Begin
 L1 = The set of the frequent 1-itemsets;
 For (k=2; Lk-1 <> null; k++) do
 Begin
 Ck = Apriori-gen(Lk-1);
 For each candidate c in Ck do
 If support of c >= min _support then
 Add c to Lk;
 End
 Find maximal reference sequences from L;
End
Procedure Apriori-gen(Lk-1)
Begin
 Ck=null;
 For each operation set Li in Lk-1
 For each operation set Lj in Lk-1
 Begin
 If Li and Lj can be joined then
 Begin
 c1 and c2 = Li Join Lj;
 If c1 has no infrequent sub-sequence then
 Add c1 to Ck;
 If c2 has no infrequent sub-sequence then
 Add c2 to Ck;
 End
 End
 Return Ck;
End

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 268

Fig.2. Executable sequential pattern analysis algorithm
among web service usage log.

5 Experiments and Evaluation
In order to evaluate our idea and to measure the gain in
time yielded by our proposed improvement, due to the
lack of the service usage log, we decided to do some
experiments over an analytical log. To do this, we
developed a program which randomly generates
sessions containing the sequences with two, three, or
four operation calls. The number of these sessions
equals to 200,000 which results in approximately
500,000 log entries excluding begin and end entries. We
establish a ratio between the executable sequences and
the non-executable ones every time a log is generated.
In order to make some sequences to satisfy the
minimum support count, some of the candidate
sequences are selected and randomly written over some
occurrences of the other sequences. This makes some
sequences to be more frequent than others and
consequently sequential pattern analysis program can be
done providing some results.

We select the execution time as the main criterion to
be measured in order to evaluate our algorithm. This
criterion also gives implicit information about the
number of the candidate sequences examined during the
execution of the algorithm which can be considered as
another criterion. This is because of the fact that the log
is traversed for each candidate sequence and other
processing times are negligible regarding this traverse
time. To better analyze the performance of our
algorithm, we measure the execution time regarding two
factors: the fraction of the number of the executable
sequences over all the log sequences which we call log

ratio and the minimum supports. We repeat the
experiment for the nine different values of the log ratio
starting from 0.1 up to 0.9 incremented by 0.1 in each
step. For each value of the log ratio we must generate a
new log. Furthermore, in each step we take five runs
according to five different values for the minimum
support: 0.04, 0.06, 0.08, 0.10, and 0.12. Therefore, the
ongoing results arise from 45 different runs of the both
of the basic and improved algorithm.

Fig.3. Execution time in seconds. (a) based on different log
ratios. (b) based on different minimum supports.

Fig.3 illustrates the execution time of the algorithms

in seconds. Fig.3 (a) compares two algorithms in the
terms of the duration in seconds for different values of
the log ratio and Fig.3 (b) represents the same
comparison but for different support values. We expect
that with the increase in the log ratio as well as the
minimum support, the difference between the execution
time of the two algorithms become decreased. This
occurs because with the increase in the log ratio, the
number of non-executable candidate sequences which
impose useless effort in basic algorithm becomes
reduced. In the other side, the higher value of the

Procedure Improved_Apriori-gen(Lk-1)
Begin
 Ck=null;
 For each operation set Li in Lk-1
 For each operation set Lj in Lk-1
 Begin
 If Li and Lj can be joined then
 Begin
 c1 and c2 = Li Enhanced-Join Lj;
 If c1 is not empty
 & c1 has no infrequent sub-sequence then
 Add c1 to Ck;
 If c2 is not empty
 & c2 has no infrequent sub-sequence then
 Add c2 to Ck;
 End
 End
 Return Ck;
End

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 269

minimum support reduces the number of both of
executable and non-executable candidate sequences and
consequently reduces the execution time of both of them
as well as their difference.

This difference in the execution time gives a little
information about the behavior of these two algorithms
since although the difference decreases, but the
execution time itself becomes decreased and this fact
prevents us from doing an accurate inference. To
achieve better evaluation, we measure the performance
of our algorithm by means of the fraction of the time
taken by basic algorithm which our improved algorithm
takes. We simply divide the execution time of the
improved algorithm by the execution time of the basic
algorithm. We call this ratio as I-B ratio. We compute
this I-B ratio for different values of the log ratio as well
as the minimum support. Fig.4 illustrates the results. As
shown in Fig.4 (a), with decrease in the log ratio, the I-
B ratio falls down. This means that the more the non-
executable sequences, the more useless effort is taken in
basic algorithm. The exception in the point 0.6 arises
from the fact that the log is generated randomly and it is
possible that in some logs the number of the non-
executable candidate sequences be at a low level which
causes a reduction in the useless effort. Fig.4 (b) states
another interesting point. Although we save more time
in case of the lower minimum supports in the same log,
but the I-B ratio remains constant approximately. The
reason is that the increase and decrease of the minimum
support causes the decrease and increase respectively on
the number of the candidate sequences in both
algorithms and this same effect keeps the ratio
unchanged.

In summary, we observe that application of our idea
for mining the frequent executable sequence yields a
great benefit and causes great saving in the time. The
experiment shows the average value of 0.23 for I-B ratio
over all runs including the different log ratio and
different minimum supports. This means that we save
%77 of the time in average and this is actually a great
percent. Taken into account different log ratios, in best
case we gain %87 saving in 0.1 and %61 in worst case
for 0.9 which still is a large amount even though only
0.1 of the log contains non-executable sequences.

Fig.4. Execution time of improved algorithm over
Execution time of base algorithm. (a) based on different log
ratios. (b) based on different minimum supports.

6 Related Work
Noticeable efforts have been made in order to apply
data mining techniques in the web known as the web
mining. Nowadays, due to the increasing use of the web
services, there is a tendency to apply those techniques in
the field of the web service and this has made the web
service mining a hot topic for research. Q. A. Liang et
al. [2] introduced the term service mining and used it to
compose web services. R. Gombotz et al. [7] have
introduced the concept of Web Service Interaction
Mining (WSIM) as mining patterns in the interactions of
the web services with each other. They defined three
levels of abstraction regarding WSIM: the operation
level, the interaction level and the workflow level. They
also provided appropriate web service log format in
each of these three levels. M. Ruached et al. [9] used
web service log mining to enable the verification of the
behavioral properties in web service composition. They
also proposed a logging solution to collect web service
usage data. Q. A. Liang et al. [10] have introduced the
concept of Service Usage Mining as the pattern
discovery through web service usage data. They defined
service usage data at three different levels: user request

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 270

level, template level and instance level. In their paper,
an algorithm for service association rule mining in
template level is provided but other algorithms in other
levels aren’t presented and are planned for future work.
Additionally, defining a service-pattern-discovery
enabled registry-repository architecture is another
contribution of that work.

7 Conclusion and Future Works
The paper focuses on web service usage mining as the
task of discovering frequent sequential pattern from the
web service usage log. A format for the web service
usage log was provided and the AprioriAll algorithm
was proposed as a basic algorithm for mining sequential
patterns according to the presented log format. The
paper further focused on a special kind of the sequence
of the web service execution and introduced the concept
of executable sequence. In order to mine sequential
patterns in executable sequences –so called executable
sequential pattern mining- some modifications were
applied to basic algorithm to achieve better
performance. Finally, the performance of improved
algorithm was investigated using some experiments
over an analytical log. The results showed the average
gain of %77 in execution time. This amount grows up
with the decrease in the ratio of the number of the
executable sequences over the non-executable
sequences in the usage log.

In the future, we are intended to investigate the
application of the concept of the executable sequences
in web service composition and to develop a web
service composition method which exploits the
executable sequential pattern analysis algorithm.

References
[1] R. Nayak, and C. Tong, Applications of data mining

in web services, Lecture Notes in Computer
Science, Vol. 3306, November 2004, pp. 199-205.

[2] Q. Liang, S. Miller, and J. Chung, Service mining
for web service composition, IEEE International
Conference on Information Reuse and Integration
(IEEE IRI-2005), Las Vegas, Nevada, USA, 2005.

[3] R. Agrawal, and R. Srikant, Mining sequential
patterns, Eleventh International Conference on
Data Engineering, IEEE Computer Society Press,
Taipei, Taiwan, 1995, pp. 3-14.

[4] R. Cooley, B. Mobasher, and J. Srivastava, Web
Mining: Information and Pattern Discovery on the
World Wide Web, Proceeding of 9th IEEE Intl.
Conf. on Tools with AI, 1997.

[5] W. Tong, and H. Pi-Lian, Web log mining by an
improved AprioriAll algorithm, WEC'05: The
Second World Enformatika Conference, 2005.

[6] S. Dustdar, and W. Schreiner, A survey on web
services composition, International Journal of Web
and Grid Services, Vol. 1, 2005, pp. 1–30.

[7] J. Rao, and X. Su, A survey of automated web
service composition methods, Proceeding of the 1st
International Workshop on Semantic Web Services
and Web Process Composition (SWSWPC2004),
LNCS, San Diego, USA, 2004.

[8] R. Gombotz, K. Baina, and S. Dustdar, “Towards
web services interaction mining architecture for e-
commerce applications analysis,” Proceedings of
the Conference on E-Business and E-Learning,
2005.

[9] M. Rouached, W. Gaaloul, Wil M. P. van der Aalst,
S. Bhiri, and C. Godart, “Web Service Mining and
Verification of Properties: An Approach Based on
Event Calculus,” Cooperative Information Systems
(CoopIS) 2006 International Conference, Lecture
Notes in Computer Science, 4275: pp 408-425,
2006.

[10] Q. A. Liang, J. Y. Chung, S. Miller, and Y.
Ouyang, “Service pattern discovery of web service
mining in web service registry-repository,” IEEE
International Conference on e-Business
Engineering (ICEBE'06), 2006.

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 271

