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Abstract: – This work presents numerical algorithms for simulation of distributed-parameter systems with 
direct applications in electrical engineering. The algorithms are developed in the context of the finite element 
method. Many works in the professional literature present coupled models for the electromagnetic devices and this 
work is toward this direction with emphasis on the development of efficient algorithms in numerical computation 
of the coupled models. 

Our work describes the solution of coupled electromagnetic and heat dissipation problems in two dimensions 
and cylindrical-coordinates system for devices with cylindrical symmetry.  

The purpose of the work is to define both conventional algorithms and parallel algorithms for coupled 
problems in context of the finite element method. The mathematical models for electromagnetic field are based on 
potential formulations. Some numerical results are presented. 
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1 Introduction 
The reality forces us to deal with complex coupled 
systems where two or more physical systems interact. 
Two or more fields coexist in the same geometry, in 
the same electromagnetic device. These fields interact. 
For example, induction heating is used for surface 
treatment of materials. In this practical application, the 
eddy currents generated by an electromagnetic 
inductor are used as the thermal heat sources through 
the Joule effect. More, any change in the physical or 
geometric parameters of an electromagnetic device 
will affect both magnetic and thermal fields. In our 
target examples the physical phenomena are 
electromagnetic and thermal. The physical properties 
of the materials are strongly dependent on the 
temperature, especially the following characteristics: 
electric conductivity, magnetic permeability, specific 
heat and thermal conductivity. 

In this work we limit our discussion to coupled 
electromagnetic and thermal fields. Mathematical 
models for the problems in which the electromagnetic 

field equations are coupled to other partial differential 
equations, such as those describing thermal field, fluid 
flow or stress behaviour, are described by equations 
that are coupled [1]. The coupling between the fields is 
a natural phenomenon and only in a simplified 
approach the field analysis can be treated as 
independent problem.  

 In several cases, it is possible a decoupling and a 
cascade solution of the coupled equations. Another 
attractive and efficient approach of solving coupled 
differential equations is to consider the set as a single 
system. In this way a single linear algebraic system for 
the whole set of differential equations is obtained after 
discretization, and is solved to a single step. If one or 
more equations are non-linear, non-linear iterations of 
the whole system are required. 

The equations of the electromagnetic fields and 
heat dissipation in electrical engineering are coupled 
because the most of the material properties are 
temperature dependent and the heat sources represent 
the effects of the electromagnetic field [1]. 
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The thermal effects of the electromagnetic field 
are both desirable and undesirable phenomenon. Thus, 
in conducting parts of some electromagnetic devices 
(coils of the large-power transformers, current bars, 
cables conductors, conductors of the electric machines 
etc) the heating is an undesirable phenomenon. The 
heat is generated by ohmic losses of the driving 
currents and eddy currents induced in conducting 
materials. But in induction heating devices for welding 
the heating is a desirable phenomenon. The thermal 
effect of the electromagnetic field is the treatment base 
for many electric materials in industry [5]. 

With the terminology of the system theory, we 
identify two kinds of the heat sources (and commands 
in an inverse problem): 
• Distributed sources (electrical  currents) 
• Boundary sources (Dirichlet condition, Neumann 

condition, convection and radiation) 
In the heating of the electromagnetic devices, the 

internal heat sources (position, amplitude) are 
represented by:  
• Ohmic losses from driving (source) currents 
• Ohmic losses from eddy currents induced in 

conducting materials of the time variable magnetic 
field 

• Dielectric losses due to friction in the molecular 
polarisation process in solid dielectrics that form 
the insulation of the high-voltage apparatus 

• Hysteresis loss in magnetic problems. It is due to 
magnetic domain friction in ferromagnetic 
materials. 
 The boundary sources  (commands) can be [3]: 

• Dirichlet command, that is, an imposed 
temperature on the boundary of the spatial domain  

• Neumann command  that involves an imposed 
flux temperature on the boundary of the spatial 
domain  

• Convective command (the temperature of the 
ambient medium or a cooling fluid, a parameter of 
the cooling fluid as the speed etc)  

• Radiation commands (the temperature of the 
ambient medium or other parameters that are 
outside the spatial domain of the field problem and 
influences the temperature of a device by radiation 
phenomenon).  

 
 

2 Mathematical models for 

electromagnetic field 
For numerical simulation of the coupled systems we 
must have in mind some practical aspects: 

♦ Mathematical models of electromagnetic field 
and thermal field 

♦ Mathematical  tools for field problems 
♦ Mathematical methods for coupled problems 

A complete mathematical model for coupled 
electromagnetic-thermal fields involves Maxwell’s 
equations and the heat conduction equation. 
Combining these equations yields a coupled system of 
non-linear equations. 

A complete physical description of 
electromagnetic field is given by Maxwell’s equations 
in terms of five field vectors: the magnetic field H, the 
magnetic flux density B, the electric field E, the 
electric field density D, and the current density J. In 
low-frequency formulations, the quantities satisfy 
Maxwell’s equations [3]: 

JH =×∇    (1) 

t

B
E

∂

∂
−=×∇   (2) 

0=Bdiv    (3) 

cDdiv ρ=   

 (4) 
with ρc the charge density, σ – the electric 

conductivity, and µ the magnetic permeability. For 
simplicity we give up to the bold notations for vectors. 

The second set of relationships, called the 
constitutive relations, is for linear materials: 

EJEDHB σεµ === ;;  
The B-H relationship is often required to 

represent non-linear materials. The current density J in 
Eq. (1) must represent both currents impressed from 
external sources and the internally-generated eddy 
currents.  

The formulation with vector and scalar potentials 
has the mathematical advantage that boundary 
conditions are more often easily formed in potentials 
than in the fields themselves. The magnetic vector 
potential is a vector A such that the flux density B is 
derivable from it by the operator curl or  ( ×∇ ). 

The mathematical models for the electromagnetic 
field problems may be included in two formulations: 
♦ Integral equation formulations (Fredholm integral 

equations) 
♦ Differential equation formulations (partial 

differential equations of elliptic or parabolic type) 
♦ Hybrid formulations  

The complexity of the mathematical model for 
electromagnetic field was one of the main reasons to 
find and develop new computational methods. All 
methods can be included in one of the following 
classes [3]: 
• Manipulation of the equations so that some 

unknowns are eliminated 

6th WSEAS International Conference on SYSTEM SCIENCE and SIMULATION in ENGINEERING, Venice, Italy, November 21-23, 2007     72



• Definition of some potential functions from where 
the field unknowns can be obtained by simple 
processing 

• Finding of some assumptions that simplifies the 
computation for practical problems 
The potential formulations seem attractive 

because of their computational advantages. One of 
these consists in the fact the boundary conditions are 
easily framed in the potentials than in the field 
themselves. 

 

 

2.1.The eddy-currents problem 
The time-varying magnetic field within a conducting 
material causes circulating currents to flow within the 
material. These currents called eddy-currents can be 
unwanted or desirable phenomena. Thus, the eddy-
currents in electrical machines give rise to unwanted 
power dissipation. On the other hand the induction 
heating is a wanted phenomenon in industry of the 
metal treatment.  

Industrial equipment in which the eddy currents 
are essentially can be included in one of the following 
classes: 
♦ long structures, in which the electric field  and 

the current density posses only one component 
♦ complex structures in which we use models 3D 

In the long structures, the currents are generated 
by an electric field applied at the terminals of the 
conductor or by a time-varying magnetic field linking 
the loop formed by the conductors. These structures 
belong to electric transmission network or the 
distribution networks (bus bars, large-power cables 
etc). In these problems the applied voltage of the bar 
or cable is known and we seek to compute the current 
density distribution within the conductor in order to 
determine some electromagnetic quantities of interest 
(the electrodynamic forces, mutual inductances, local 
heating etc). 

The complex structures create difficulties in 
simulation and computation of their characteristics 
although these structures possess construction 
simplicity. One of these structures is the device for 
electric heating by electromagnetic induction. In these 
type the applications it is necessary to compute 
accurately the eddy currents. If the eddy-currents 
distribution is non-uniform, the resulting high-
temperature gradients may crack the workpiece. 

The problems are different in the two different 
types of applications but for any given application the 
presence of the saturable iron sheets introduces 
saturation phenomena and the problem becomes non-
linear. 

For each class we can apply general mathematical 
methods but it is more efficient to develop a particular 
algorithm for each kind of classes. 

The effects of the eddy currents are: 
♦ The time-varying magnetic flux density is non-

uniform within the conductor. The alternating 
magnetic flux is concentrated toward the outside 
surface of the material (phenomenon known as the 
skin effect). 

♦ Power losses are increased in the material 
 
Eddy current computation appears in two types of 

problems: 
♦ Stationary problems where the structures are 

fixed and source currents are time varying 
♦ Motion problems where the field source is a coil 

in moving 
Many practical engineering problems involve 

geometric shape and size invariant in one direction. 
Let z denote the cartesian co-ordinate direction in 
which the structure is invariant in size and shape. This 
is the case of a plane-parallel field or translational 
field problem, where A has one component, namely 
Az. It is independent of the z co-ordinate and the 
Coulomb gauge is automatically imposed and V is 
independent of x and y.  In such a case both the 
magnetic vector potential and the source current JS 
reduce to a single component oriented entirely in the 
axial direction and vary only with the co-ordinates x 
and y.  

Consequently, the component Az (for simplicity 
we give up the subscript z) satisfies the diffusion 
equation in fixed [1]: 

sJ
t

A
A −=

∂

∂
−∇∇ σν )(   (5) 

or in Cartesian co-ordinates: 

s-J=
t

A
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y

A
(υ

y
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x ∂

∂
−

∂

∂

∂

∂

∂

∂

∂

∂
 (6) 

The boundary conditions are set-up for the single 
component A and can be Dirichlet and/or Neumann’s 
condition. The interface conditions between two 
materials with different properties are: 

N

A

N

A
AA

∂

∂
=

∂

∂
= 2

2
1

1;21 υυ  

where n is the normal at the common  surface of 
the two regions with different material properties. 
 

2.2. Modelling of time-dependent fields 
The time dependent electromagnetic field problems 
are usually solved using differential models of 
diffusion type. Many practical problems of great 
interest in electromagnetics involve time-harmonic 
fields and this case will be considered in this work. 
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In general, computer software for time-varying 
problem can be classified into two classes [3]: 

1. time-domain programs 
2. frequency-domain programs 
Time-domain programs generate a solution for a 

specified time interval at different time moments. 
Frequency-domain programs solve a problem at one or 
more fixed frequencies. 

The first class has some disadvantages. One of 
these consists in the large amount of data that must be 
stored to recover the field behaviour. Although the 
second class has an essential advantage (a compact 
and a cheap program in terms of the computer 
resources), the area of problems that can be solved is 
limited. It is applicable only to linear problems (all 
phenomena are sinusoidal). 

The usual mathematical model for time dependent 
electromagnetic field problems is with Maxwell’s 
equations in their normal differential form. For low 
frequency the displacement current term in Maxwell’s 
equations can be neglected. At a surface of a 
conducting material the normal component of current 
density Jn can be assumed to be zero. 

 
 

3 Mathematical modelling of the 

thermal field 
The thermal field is described by the heat conduction 
equation [2]: 

 qTTkTT(c
t

=∇⋅−∇+⋅
∂

∂
])([]))([ γ   (10) 

where:  T(x,t) is the temperature in the spatial 
point x at the time t; point k is the tensor of thermal 
conductivity; γ is mass density; c is the specific heat 
that depends on T; q is the density of the heat sources 
that depends on T. In the coupled problems we use the 
formula: 

  2)( JTq ⋅= ρ                 (11) 
with ρ the electrical resistivity of the material. 

Equation (10) is solved with boundary and initial 
conditions. The boundary conditions can be of 
different types: Dirichlet condition for a prescribed 
temperature on the boundary; convection condition; 
radiation condition, and mixed condition [2]. 

For many eddy-current problems the magnetic flux 
penetration into a conductor without internal sources 
of the magnetic field is confined mainly to surface 
layer. This is the skin effect. The skin depth δ depends 
on the material properties µ, ω and σ so that for the 
small depths all of the effects of the magnetic field is 
confined to a surface layer.  

In steady-state low-frequency eddy current 
problems in magnetic materials, the mathematical 
model is the diffusion equation (6). 

The skin effect can be exploited in two directions: 
• To reduce the space domain in analysis  with a 

fine mesh close to conductor surfaces 
• To reduce the material volume since a 

significant proportion of the conductor is 
virtually unused  

The penetration depth is given by the formula: 

ωσµ
δ

2
=    (12) 

For example, in a semi-infinite slab of conductor 
with an externally applied uniform alternating field, 
parallel to the slab, the amplitude of flux decays 
exponentially. In other words for problems with the 
skin depth very small all the effect of the field is 
confined to a surface layer. In a numerical model 
based on finite element method (FEM) this effect can 
be exploited by the use of a special boundary 
condition, known as the surface impedance condition. 
In this way we don’t waste run-time of a program 
based on FEM. 

Designer engineers use the formula (12) 
considering the permeability and the conductivity as 
numbers. In reality the two physical parameters 
change during heating. The changes in the value of δ 
affect the loss in the material and depend on the 
process (conduction or induction). For example, if the 
conductivity decreases by x, the depth increases by √x, 
that is the current penetrates deeper into the metal.  If 
the magnetic material heats, its resistivity (the inverse 
of the conductivity) rises but its relative permeability 
remains substantially constant up to the Curie point. In 
this point it drops suddenly to unit. 

Another simplifying assumption for the designer 
engineers is based on that all heat enters at the surface 
of the conductor. In reality, this is only true if the 
frequency of the magnetic field source is very high and 
the depth of heating is small compared with the 
geometrical dimensions of the conductor.  

For an accurate computation of the penetration 
depth of the magnetic field we must consider two 
practical conditions: 

• The heat is distributed in the conducting part 
• There is an important heat lost by radiation at 

the conductor surface 
Radiation can be regarded as a simple surface loss 

subtracting from the surface power input.  The Stefan-
Boltzmann law gives the radiation loss. If the body is 
radiating to a surface at absolute temperature T∞ 
Kelvin, the radiation loss is defined by: 

)44(0 ∞−= TTCrrP ε  
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where εr  is the emissivity coefficient of the surface 
(dimensionless) and T is the absolute surface 
temperature in Kelvin (K). The constant C0 is 5.67.10-8 
W/m2K4.  For low temperatures the radiation loss is 
negligible but in the induction-heating device it must 
be considered. 

Consequently, it is convenient to use coupled 
models and accurate methods for computation of the 
heat penetration in the conductors, especially in the 
induction heating devices. 

 

 

3 Coupled models 
With a correct formulation of the mathematical models 
and a good selection of the mathematical tools for a 
specified field problem, we have the methods for the 
numerical solution of the field problem.  Ones of these 
methods for field problems are moment’s method, 
finite element method (FEM), boundary element 
method (BEM), hybrid method BEM-FEM, finite 
volume method (FVM), and edges element method 
(EEM). 

In our works we considered the FEM. This method 
can be viewed as a particular case of the general 
method of moments, or a case of the Rayleigh-Ritz 
method. 

 
3.1.Coupled magnetic and thermal fields 
For magnetic field we consider the A-formulation, that 
is we define the magnetic vector potential A by B = 
curl A. More, the domain is the same for temperature 
and the electromagnetic field although in practice the 
interest is for different field domains.  

In order to solve the transient coupled set of 
equations a numerical model can be developed using 
the finite element method [4]. The finite element 
discretization in space is used, leading to a system of 
first-order differential equations: 

{ } { } 0][][ =++
∂

∂









JfA
A

K
t

A

A
S  (13) 

{ } { } 0][][][ =++
∂

∂







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A
AT

KT
T

K
t

T

T
S  (14) 

where the matrices have the entries defined in 
accordance the FEM. The subscripts A and T refer to 
the magnetic and thermal field respectively. The 
vector {fJ} is generated by the heat source. 

HHJq ×∇⋅×∇== ρρ
2

 

The two equations are coupled and nonlinear. 
Finally, the two models can be considered as a coupled 
system defined in matrix form : 
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In a discrete form the unknowns are the nodal 
values of the temperature T and the magnetic vector 
potential A. 

The non-linear equations for T and A are 
straightforwardly obtained by a Galerkin's finite 
element method. For the 2D steady-state problems we 
do the approximations at the element level [1]: 

∑
=

=
r

j
jTyxjNyxT

1
),(),(  

∑
=

=
r

j
jAyxjNyxA

1
),(),(  

where the interpolation functions Nj are basis 
functions in the mesh over Ω, and r is the number of 
nodes of an element.  

The usual procedure for the FEM applications 
leads to a system of 2p equations where p is the total 
number of the unknowns in each field problem. 
Finally, the coupled problem is described by a system 
of algebraic systems in the form: 

0),...,,,...,( 11 =ppA TTAAf   (15) 

0),...,,,...,( 11 =ppT TTAAf   (16) 

where the subscript denotes the original problem (A – 
for the magnetic field in the magnetic vector potential 
formulation; T – for the thermal field). 

 
 

4 Iterative algorithms for coupled 

problem 
The finite element method has three distinct 

logical stages: pre-processing, processing (solution) 
and post-processing.  Each stage has an inherent 
parallelism that can be exploited for parallel 
computing. New algorithms for the parallel computers 
were developed and presented in the professional 
literature [3].  We shall limit discussion to one of 
them: domain decomposition. This algorithm uses the 
subdomain-to-subdomain iteration.  

 

 

4.1.Conventional algorithms 
The numerical model for coupled problem can be 
solved by two different basic strategies [7]: 
♦ Solving the equations for Ti and Ai simultaneously 
♦ Solving the equations for the two fields in 

sequence with an outer iteration, technique known 
as operator-splitting technique (for example 
Newton-Raphson procedure) 
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In the area of the first strategy, Gauss-Seidel and 
Jacobi methods are well known. We present these 
methods in brief.  

The Gauss-Seidel algorithm for coupled fields 
has the following pseudo-code [7]: 

 
For  m:=1 , 2, … until convergence DO 

• Solve  

0))1(,...,)1(
1;)(,...,)(

1( =−− m
pT

m
T

m
pA

m
A

A
f

 with respect to A1
(m)
, … Ap

(m)
 

• Solve 

0))(,...,)(
1;)(,...,)(

1( =m
pT

m
T

m
pA

m
A

T
f  

with respect to T1
(m)
 , … Tp

(m) 

 
In other words, the system is solved firstly with 

respect to A, using the values of T from the previous 
iteration. Afterwards, the equation derived from the 
thermal field model is solved using the computed 
values of A from the current iteration. The equations 
fA=0 or/and fT=0 are non-linear and must be solved by 
an iterative procedure (for example Newton-Raphson 
method). 

The algorithm Jacobi-type is similar to Gauss-
Seidel method, except that at the iteration m when we 
must solve the model for T, the values for A are from 
the previous iteration, that is A(m-1). The algorithm has 
the following pseudo-code: 

 
For m:=1 , 2, … until convergence DO 

• Solve  

011
11 =−−

)
)(m

p,...,T
)(m

;T
(m)
p,...,A

(m)
(A

A
f

with respect to A1
(m)
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• Solve 
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pT

m
T

m
pA

m
A

T
f

with respect to T1
(m)
 , … Tp
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This algorithm has an inherent parallelism so that 

can be implemented in a parallel program. Practically,  
we decomposed the coupled problem in two 
subproblems: one for the magnetic field, another for 
the thermal field.  At a time step of the algorithm, the 
numerical models for the two fields can be solved 
independently. 

 
 

4.2.Advanced algorithms 
The domain decomposition method [8] is the best 
among three possible decomposition strategies for the 
parallel solution of PDEs, namely, operator 
decomposition, function-space decomposition and 
domain decomposition. This is one of the motivations 

to present the principles of the domain decomposition 
methods in this section. 

The domain decomposition could be determined 
from mathematical properties of the problem (real 
boundaries or interfaces between subdomains), or 
from the geometry of the problem (pseudo-
boundaries). For elliptic partial differential equations, 
there exists a mathematical approach based on the 
ideas given earlier in 1890 by Schwarz [8]. In Schwarz 
procedure there is an inherent parallelism with a data 
communication time for the passage of pseudo-
boundary data between the subproblems.  

There is no general rule for the domain or/and 
operator decomposition. It is defined in a somewhat 
random fashion. The problems and solutions that 
appear in the decomposition techniques depend on the 
following aspects [1]: 

• If it is used domain decomposition or the 
operator decomposition 

• If the partition has disjoint or overlapping sub-
domains 

• The type of boundary conditions that are  set up 
on the pseudo-boundaries of the sub-domains 

• If  the decomposition is static or dynamic 
 
 

4.3 Decomposition techniques 
The desire of the scientific community for faster 
processing on lager amounts of data has driven the 
computing field to a number of new approaches in this 
area. The main trend in the last decades has been 
toward advanced computers that can execute 
operations simultaneously, called parallel computers. 
For these new architectures, new algorithms must be 
developed and the domain decomposition techniques 
are powerful iterative methods that are promising for 
parallel computation. Ideal numerical models are those 
that can be divided into independent tasks, each of 
which can be executed independently on a processor. 
Obviously, it is impossible to define totally 
independent tasks because the tasks are so inter-
coupled that it is not known how to break them apart. 
However, algorithmic skeletons were developed in this 
direction that enables the problem to be decomposed 
among different processors. The mathematical 
relationship between the computed sub-domain 
solutions and the global solution is difficult to be 
defined in a general approach. 

In the area of the coupled fields we define two 
levels of decomposition, that is we define a hierarchy 
of the decompositions:  

• One at the level of the problem 
• The other at the level of the field 

In other words, we decompose the coupled 
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problem in two sub-problems: a magnetic problem and 
a thermal problem, each of them with disjoint or 
overlapping spatial domains. This is the first level of 
decomposition. At the next level, we decompose each 
field domain in two or more subdomains. The 
decomposition is guided both by the different physical 
properties of the materials, and the difference of the 
mathematical models. At this level of decomposition 
the Steklov-Poincaré operator can be associated with 
field problem [8]. This operator reduces the solution of 
the coupled subdomains to the solution of an equation 
involving only the interface values. One efficient and 
practical solution of elliptical partial differential 
equations is the dual Schur complement method [3]. 

 
 

5 Some industrial applications 
In any electromagnetic device there are power losses 
that are transformed in heating so that the modelling of 
device involves coupled mathematical models. In 
electrical engineering the coupled electromagnetic and 
thermal fields represent both desirable phenomena and 
undesirable phenomena. Two examples illustrate this 
assertion: induction heating and the high-voltage (HV) 
electrical cables.  

Induction heating describes the thermal 
conductivity problem in which the heat is generated by 
eddy currents induced in conducting materials, by a 
varying magnetic field. Induction heating is an 
efficient procedure for bulk-heating metals to a set 
temperature. The heating is generated by the eddy-
currents induced from a separate source of alternating 
current.  

Figure 1 shows a long cylindrical workpiece 
excited by a close-coupled axial coil. The device has a 
cylindrical symmetry so that the problem can be 
reduced to a 2D-problem in the plane Orz. An axial 
section is presented in the figure 2 with 1- the 

workpiece, 2 – the air and 3 – the coil. The coil is 
assimilated with a massive conductor. In this case we 
can not ignore the eddy currents in the coil. 

 

In Fig.2 an axial section is presented. The coil is 
assimilated with a massive conductor. In this case we 
can not ignore the eddy currents in the coil. We 
consider a low-frequency current in the coil so that the 
penetration depth is large. In this case we can 
decompose the whole domain of the field problem into 
overlapped subdomains for the two coupled-fields.   

The domain for the magnetic field can be reduced 
to a quarter of the device bounded by a boundary at a 
finite distance from the device. For the thermal field 
we consider the workpiece as the analysis domain. The 
penetration depth of the magnetic field in the 
workpiece imposes the overlapping domains for the 
two fields [5]. The numerical model is considered in a 
cylindrical co-ordinates with the vertical axis Or and 
the horizontal axis Oz. 

The mathematical model for the electromagnetic 
field using A-formulation is a 2D-scalar model in (r-z) 
plane: 
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For the harmonic-time case, mathematical model 

is: 
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Fig.1 - Device for induction heating 

Fig. 2 – Axial section of the induction-heating device
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Another example that we present is a high-
voltage cable with three phase conductors and a 
neutral conductor [9]. The HV cables are important 
components of the energetic system for distribution of 
the electric energy.  Fig. 3 shows the cross-section of 
the system.  

This high-voltage tetra-core cable has three 
triangle sectors with phase conductors and round 
neutral conductor in the lesser area of the cross-section 
above. All the conductors are made of copper. Each 
conductor is insulated and the cable as a whole has a 
three-layered insulation. The cable insulation consists 
of inner and outer insulators and a protective braiding 
(steel tape). The sharp corners of the phase conductors 
are chamfered to reduce the field crown. The corners 
of the conductors are rounded. Empty space between 
conductors is filled with some insulator (air, oil etc.) 

 
 

6 Numerical results 
We shall present the results of the numerical 
simulation for the cable.  This system can be analysed 
for different operating regimes. When the cables are in 
load, the conductor currents can generate local heating 
that destroys the insulation and finally, the whole 
system. Consequently, the temperature distribution is 
of great importance for the designer. Fig. 4 shows the 
temperature map of the system. 

Each cable-core has its own insulation but there 
are two layers of insulation: inner cable insulation and 
outer cable insulation more thick than the internal 
insulation. Also, there is a protective steel braiding. 

The load of the conductors are currents of 
amplitude equal to 250 A at the frequency of 50 Hz. 
The voltage amplitude is 7000 V. 
 
 

 
Fig. 4 – The temperature map 

 
The non-uniformity of the temperature is due to 

the non-uniformity of the current density in system. In 
figure 5 the map of the total current density is shown.  
In computation of the total current in the cable, the 
skin effect and proximity effect of the cable cores were 
considered. 

  
Fig. 5– The current density map 

 
In post-processing stage of the FEM program, a 

lot of physical physical quantities can be obtained [2]. 
They are of great importance for the electrical 
engineers in the evaluation of the device performance. 
These derived quantities are presented in user’s 
manual of any software  CAD [9]. 
 

 

7 Conclusions 
The problem of coupled fields in electrical engineering 
is a complex problem in terms of computing resources. 
In practice the coupled fields are treated independently 

 
 

Fig. 2 – Cross section of the cable 
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in some simplified assumptions. The accuracy of the 
numerical computation is poor. With the new 
architectures, a multidisciplinary research is possible. 
Some iterative procedures were presented with 
emphasis on the coupled problems. 

Domain decomposition offers an efficient approach 
for large-scale problems or complex geometrical 
configurations. This method in the context of the finite 
element programs leads to a substantial reduction of 
the computing resources as the time of the processor.  

In coupled problems a hierarchy of decomposition 
can be defined with a substantial reduction of the 
computation complexity. 

The finite element method was used for the 
numerical result.  The  program Quickfield [9] was 
used in  our target examples. 
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