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Abstract: - The Need to extract the association rules from the pool of varied data, having gained increased 
momentum in the field of data mining, necessitates the discovery of methods to process multi-dimensional data, 
and find the qualitative or quantitative association rules from it by considering all the relevant fields in an 
efficient manner In this paper we propose an efficient and novel algorithm for finding the boundaries of attributes 
domains dynamically. It first builds an abstraction, called Multi-Variate Tree, in single scan of the database. 
During this construction the boundaries of domains of (quantitative) attributes are identified dynamically. These 
identified attributes with boundary values which are frequent are then used for finding association rules. 
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1 Introduction 
Whenever we talk of data-mining, we are referring 
to a huge amount of data [1]. Under the given 
scenario, in which a single scan of the database 
itself seems to be a gigantic task, multiple scans of 
the database cause too much of overhead, in terms 
of memory consumption and computation-time. In 
certain cases, it can prove too demanding for the 
system to meet the desired end. 

With this end in view, it becomes highly 
imperative that we devise techniques that need  
smaller number of scans of the database, and 
consume less memory space for generation of the 
desired result. Discovery of association rules being 
the canonical task of data mining, it goes without 
saying that, simply finding the frequent patterns 
does not necessarily serve the purpose, as it is 
equally important to know its association with 
other relevant information fields [1,2,3,4], that 
have high relevance with the corresponding 
transaction, in order to get a comprehensive result   

 
 

that encompasses all the associated key areas of the 
transaction. Of course we have the decision tree [1] 
algorithm which associates relevant information of 
a transaction with items bought, only if the class 
label attribute is present in the database. 

 In this paper we are introducing a novel method 
for discovering the frequent item-sets, and the 
boundary values of the attribute fields associated 
with them. Here, we construct a tree called Multi-
Variate Tree (MVT), which stores not only the 
item number and its count, but also the minimum 
and the maximum values of the other relevant 
information fields i.e. attributes, associated with 
that item in the transactional item-set. Finally, we 
can mine the association between item-sets and the 
other attributes of the transaction [4,5], in terms of 
the range of values of the various attributes 
associated with a frequent item-set, in single scan 
[6] of the MVT. 
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2  Construction of Multi-Variate Tree,  
    and Finding Boundary Values of    
    Attributes   for Item-sets 
The algorithm is divided into two main phases.  
The first phase is to build an efficient tree, 
called Multi-Variate Tree, in a single scan of 
database[6] using the items in each transaction. 
In the second step, MVT is scanned once, using 
a recursive function, to obtain the quantitative 
association rule between frequent item-sets and 
the corresponding information fields i.e. 
attributes. The construction of MVT, and the 
mining of quantitative association rule from the 
MVT are outlined as follows. 
 
Structure of a Node in MVT 
 
Each node in the MVT has following two 
parts, as shown in Figure 1: 
{   item part:  
   inum: item number  
   count: support count 
   clink : link to child nodes 
   slink :link to sibling nodes 
   ilink: link to next node, having same item-
number 
  relevant-information part: 
   Each Relevant-info node has the structure: 
    { range[2] : // stores min/max values 
       flink : link to next Relevant-info node. 
    } 
}      

 
  
  Figure 1.  Node structure in a MVT 
 
 
2.1  Algorithm for Construction of MVT 
 
Input: D, a transaction database, in which items 
are considered in an increasing order of item 
numbers. 

Output:  The MVT 
 

  Create a root node of the MVT and label it as    
   “root”. Let each transaction be represented  

    by Trans [P| F], where P is the set of items  
   bought, and F is the set of relevant  
   information Fields, with Fi as its ith field.  
   Initialize Trancount, the total no. of    
   transactions in the database, to 0. 

          For each transaction Trans in database do     
          the  following: 
          Increment Trancount by 1. 
          Call insert_tree(Trans), which performs the    
          operations stated as follows: 
                   Let p point to the first item in the set P,  
     Fi be the ith  field in the set F, and T denote   
           the current node (starts with root node). 

 

Repeat until  P is non-empty 

{  
  If T has a child N such that  
  N.item-number=p.item-number, then 
        increment N’s count by 1.  
        For each Fi in F,   
            if N.[Fi].min-value is greater than the   
            Trans.[Fi].value, update N.[Fi].min-value   
            with Trans.[Fi].value, else if N.[Fi].max- 
            value is less than the Trans.[Fi].value,  
            update N.[Fi].max-value with  
            Trans.[Fi].value;  
  Else 
      Create a new node N, and initialize its  count to  

1, and set N.[Fi].min-value and N.[Fi].max- 
      value to Trans.[Fi].value. 
      If N is the only child  node of T, then  
           T’s child-link (clink) is linked to N;  
      Else link N1 (T’s youngest child node) to N,    
           using N1’s sibling-link (slink) 
Set T=N and increment p to point to next item in  
the item-set P. 

}  
 

      2.2 Finding  item-sets and the boundary  
            values of attributes associated with them 

 
Input: MVT. 

� min_sup, the minimum support count    
      threshold 
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� min_isetsize, the minimum size of the 
itemset. 

Output: The complete set of frequent item-sets, 
and the range of values of information fields, i.e. 
attributes, associated with them, depending on the 
min_sup. 
 
Method: 

Scan the entire MVT using a recursive function 
for depth-first-scan. Each time we come across a 
leaf node or a node representing a branching 
point in the MVT, take the set of all the 
intermediate items between the root node and 
that node, inclusive of that node. Also, for the 
item-set thus obtained, if the conditions of 
min_sup and min_isetsize, project the range of 
values of the information field, i.e. min-max 
values of each of the information fields Fi, 
contained in the node corresponding to the item 
having highest item number in that item-set. 

 
3 Illustration 
Apply the above algorithm to a sample  database, 
shown in Table 1,  where we have the information 
about the age, basic salary and hra (human resource 
allowance) of each customer, and the various items 
bought by him/her. The corresponding tree 
structures, in different stages are shown in the 
Figure 2  through Figure 4. Figure 4 shows the 
complete tree structure  after processing the 10th 
transaction. 
 
The nodes in the figures showing MVT are shown 
numbered, “ (node number”, for the purpose of  
illustration, and only the item number in the nodes 
are shown. Other information fields have not been 
shown individually in each of the nodes of MVT, 
in order to keep the figures  manageable and neat. 
Instead, the range of values of attributes common 
to an itemset in the tree has been shown by a 
separate ellipse, as shown in  Figure 2 and Figure 
3.  

 
 

 
 
 

 

   Table 1. Sample database    
           

 
 
In Table 1, the age is in years, basic salary in 
rupees and hra (human resource allowance) in 
rupees. Age, basic and hra form the relevant 
information part of the node, where as the item 
numbers and their count comprise the item part of 
the node. 
 

 
   
 Figure 2. Tree structure after 1st transaction 
 
The tree structure after processing of the first 
transaction (age=43; basic=4886; hra=2777; items: 
1,2,4,5,6,7,8,9) is shown in  Figure 2. The MVT 
starts with a root node, and the nodes, bearing the 
item number, are created in the order of increasing 
item number. Since each of the nodes, bearing the 
respective item number, are newly created, the 
minimum and the maximum value for each of the 
associated information fields- age, basic, hra- are 
same. In this case, each of the nodes numbered 
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from 1 to 8, has the following values in their 
information fields.  
age[min]=age[max]=43,  
basic[min]=basic[max]=4886, 
hra[min]=hra[max]=2777,  
and the count value of each of the items is 1. 
 

 
 
Figure 3. Tree structure after 2nd transaction 
 
 
After the processing of the second transaction 
(age=28; basic=6567; hra=2429; 
items:1,2,3,4,5,6,7,8,9 ), the MVT has the structure 
as shown in Figure 3. Here, since item number 1 
was already present under the root, we increment 
its count value by 1, and update its information 
field as follows. As 28 is not greater than the stored 
age[max] value of 43, we leave age[max] value 
unchanged. However, 28 is lesser than the stored 
age[min] value of 43. so,  age[min] value is 
updated to a new minimum value of 28. Next, the 
basic salary of rupees 6567 is greater than the 
basic[max] value , but not lesser than the 
basic[min] value. Hence, basic[max] value is 
updated to 6567, where as basic[min] remains 
unchanged at 4886. Similarly hra[min] is updated 
to 2429. Again, the node containing item number 2 
already exists as a child of  node1. Therefore, its 
count is incremented by 1, and its associated 
information fields are updated in a similar manner. 

Thus, the values contained in the relevant 
information fields of node 1 and node 2, after 2nd 
transaction, are as follows:  
age[min]=28, age[max]=43; 
basic[min]=4886, basic[max]=6567; 
hra[min]=2429, hra[max]=2777; 
The next item in the transaction is 3. As node 
number 2 has no child with item number 3, a new 
node with item number 3 is created under node 
number 2, as a sibling node of node number 3 
having item number 4, with count=1, and other 
information field  values as: 
age[min]=age[max]=28; 
basic[min]=age[max]=6567; 
hra[min]=hra[max]=2429; 
Similarly, other nodes are created for the rest of the 
items in the 2nd transaction. After processing the 2nd 
transaction, the structure of MVT, and the values 
contained in its nodes are shown in the Figure 3.  
Figure 3 also shows the sibling link (slink) between 
the child-nodes of the node, having node number as 
2. 
 

 
    Figure 4. Tree structure after 10th  
                     transaction 

 
 

The complete structure of MVT, after the 10th 
transaction, is shown in Figure 4. The values stored 
in the nodes after 10th transaction are shown in 
Table 2.  
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  Table 2. Values contained in the nodes of   
                  the    MVT shown in Figure 4  
 

 
 
Now, let find the item-sets and the boundary values 
of attributes associated with the item-sets. Consider 
once again the MVT after the 2nd transaction as 
depicted in Figure 4.  
 
 

  
 
 Figure 5. Mining the item-sets for   
                 the  MVT shown in Figure 2. 

 

Recall that the algorithm, for finding the quatitative 
association between item-sets and the boundary 
values of attributes associated with them, requires 
that we consider the item-set between the root node 
and a node that happens to be either a leaf node or 
a branching point, inclusive of that node, and 
project the range of values of relevant information 
field as contained in the last item of that item-set, 
i.e. the item having the highest item number. The 
lines in  Figure 5 denote the span of item-sets. 
While scanning the MVT shown in Figure 5, we 
find that the node number 2 is a branching point. 
So, starting from node number 2, we move up till 
we come to the root node, as shown by line 
number1. The item-set thus obtained is {1,2}. The 
relevant information contained in node number2, 
pertaining to item number 2 of the item-set 
obtained, is displayed as follows (refer to Figure 3 
for values after 2nd transaction). 
Count=2; 
Age-range= 18-43; 
Basic-range=4886-6567; 
Hra-range=2429-2777; 
Proceeding this way, we come across node number 
8, a leaf node. In Figure 5, line 2 gives the item-set 
corresponding to node number 8, and the result for 
the same is as follows: 
{1,2,4,5,6,7,8,9} 
count=1; 
Age-range= 43; 
Basic-range=4886;  
Hra-range=2777; 
Similarly, line 3 gives the following result: 
{1,2,3,4,5,6,7,8,9} 
count=1; 
Age-range=28; 
Basic-range=6567; 
Hra-range=2429; 
 
Using the method described above, we can find the 
result for the MVT, obtained after processing all 
the ten transactions of the sample database, shown 
in Figure 4. Table 3 shows the complete set of 
result for the MVT, shown in Figure 4. 
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Table 3.   Item-sets and the boundary values   
                 of attributes associated with them. 
 

 
 
We also have the count value of the item-sets in the 
result, besides the range of values of relevant 
information fields i.e. attributes associated with 
that item-set. As such, we can project only those 
tuples in the result, whose count value satisfy the 
minimum support threshold. 

 
4 Experimental Results 
We tested this methodology against the standard 
IBM synthetic data[7], that contained wide range of 
item numbers (more than 900) in the transaction. 
To this data, we appended the three attribute fields 
namely age, basic salary and hra, using data 
generating programs based on randomization 
functions in order to ensure that the final test data 
remained unbiased. The data contained 49,100 
transactions. The number of rules obtained under 
different values of constraints such as minimum 
support and minimum size of item-sets is shown in 
Table 4. By increasing the support threshold and 
minimum size of item-sets, we can filter out the 
desired rules to get the result showing the boundary 
values of attributes for only those item-sets that 
satisfy the minimum threshold criteria.  
 
 
 
 
 
 
 
 
 

 

Table 4. Number of itemsets obtained with   
               IBM data[7] for different values of   
               support threshold and minimum  
               item-set size 
 

 
 
Some of the rules obtained for a support threshold 
of  0.01% and minimum itemset-size limit of 5 are 
shown in Table 5 as follows. 
 
Table 5.   A Sample of results obtained with   
                 IBM data[7] for support threshold of  
                 0.01 % and min. Itemset-size limit of 5  
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5 Conclusion and Future work 
The data structure obtained through this algorithm 
is MVT, which can be used to represent a large 
database in a compact form. MVT can be 
constructed using single database scan. We have 
used it here for quantitative association between 
the item-sets and the boundary values of attributes 
associated with them. Our research reinforces the 
following: (1) While mining an extremely large 
transaction database, we should discourage the use 
of algorithms that require multiple scans of the 
massive database or create huge data structures. 
What is required is a method for developing 
compact data structure, in minimum number of 
scans of database, that can store entire relevant 
information in a compact form to obtain the desired 
association rule. (2) In order to obtain a 
comprehensive result pertaining to a transaction, 
stress should be laid upon an approach that  takes 
into account all the relevant  information fields of 
the transaction and tries to discover a rule based on 
them. 
       After having obtained promising result from 
the IBM synthetic data, next we are going to obtain 
the live data from a Cancer Hospital, and use this 
algorithm to obtain quantitative rules pertaining to 
various diagnostic parameters that can help in 
determining the chances of cancer, as well as those 
pertaining to the treatment process. 
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