
Finding the boundaries of attributes domains of quantitative association
rules using abstraction- A Dynamic Approach

RANJEET KUMAR
Department of Information &
Communication Technology,

Manipal Institute of
Technology, Manipal,

Karnataka-576104.
INDIA

 PREETHAM KUMAR
Department of Information &
Communication Technology,

Manipal Institute of
Technology, Manipal,

Karnataka-576104.
INDIA

 ANANTHANARAYANA V.S
Department of Information

Technology,
National Institute of

Technology,
Surathkal, Karnataka.

INDIA

Abstract: - The Need to extract the association rules from the pool of varied data, having gained increased
momentum in the field of data mining, necessitates the discovery of methods to process multi-dimensional data,
and find the qualitative or quantitative association rules from it by considering all the relevant fields in an
efficient manner In this paper we propose an efficient and novel algorithm for finding the boundaries of attributes
domains dynamically. It first builds an abstraction, called Multi-Variate Tree, in single scan of the database.
During this construction the boundaries of domains of (quantitative) attributes are identified dynamically. These
identified attributes with boundary values which are frequent are then used for finding association rules.

Key-Words: - MVT, boundary values of attributes, dynamic approach.

1 Introduction
Whenever we talk of data-mining, we are referring
to a huge amount of data [1]. Under the given
scenario, in which a single scan of the database
itself seems to be a gigantic task, multiple scans of
the database cause too much of overhead, in terms
of memory consumption and computation-time. In
certain cases, it can prove too demanding for the
system to meet the desired end.

With this end in view, it becomes highly
imperative that we devise techniques that need
smaller number of scans of the database, and
consume less memory space for generation of the
desired result. Discovery of association rules being
the canonical task of data mining, it goes without
saying that, simply finding the frequent patterns
does not necessarily serve the purpose, as it is
equally important to know its association with
other relevant information fields [1,2,3,4], that
have high relevance with the corresponding
transaction, in order to get a comprehensive result

that encompasses all the associated key areas of the
transaction. Of course we have the decision tree [1]
algorithm which associates relevant information of
a transaction with items bought, only if the class
label attribute is present in the database.

 In this paper we are introducing a novel method
for discovering the frequent item-sets, and the
boundary values of the attribute fields associated
with them. Here, we construct a tree called Multi-
Variate Tree (MVT), which stores not only the
item number and its count, but also the minimum
and the maximum values of the other relevant
information fields i.e. attributes, associated with
that item in the transactional item-set. Finally, we
can mine the association between item-sets and the
other attributes of the transaction [4,5], in terms of
the range of values of the various attributes
associated with a frequent item-set, in single scan
[6] of the MVT.

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 52

2 Construction of Multi-Variate Tree,
 and Finding Boundary Values of
 Attributes for Item-sets
The algorithm is divided into two main phases.
The first phase is to build an efficient tree,
called Multi-Variate Tree, in a single scan of
database[6] using the items in each transaction.
In the second step, MVT is scanned once, using
a recursive function, to obtain the quantitative
association rule between frequent item-sets and
the corresponding information fields i.e.
attributes. The construction of MVT, and the
mining of quantitative association rule from the
MVT are outlined as follows.

Structure of a Node in MVT

Each node in the MVT has following two
parts, as shown in Figure 1:
{ item part:
 inum: item number
 count: support count
 clink : link to child nodes
 slink :link to sibling nodes
 ilink: link to next node, having same item-
number
 relevant-information part:
 Each Relevant-info node has the structure:
 { range[2] : // stores min/max values
 flink : link to next Relevant-info node.
 }
}

 Figure 1. Node structure in a MVT

2.1 Algorithm for Construction of MVT

Input: D, a transaction database, in which items
are considered in an increasing order of item
numbers.

Output: The MVT

 Create a root node of the MVT and label it as
 “root”. Let each transaction be represented

 by Trans [P| F], where P is the set of items
 bought, and F is the set of relevant
 information Fields, with Fi as its ith field.
 Initialize Trancount, the total no. of
 transactions in the database, to 0.

 For each transaction Trans in database do
 the following:
 Increment Trancount by 1.
 Call insert_tree(Trans), which performs the
 operations stated as follows:
 Let p point to the first item in the set P,
 Fi be the ith field in the set F, and T denote
 the current node (starts with root node).

Repeat until P is non-empty

{
 If T has a child N such that
 N.item-number=p.item-number, then
 increment N’s count by 1.
 For each Fi in F,
 if N.[Fi].min-value is greater than the
 Trans.[Fi].value, update N.[Fi].min-value
 with Trans.[Fi].value, else if N.[Fi].max-
 value is less than the Trans.[Fi].value,
 update N.[Fi].max-value with
 Trans.[Fi].value;
 Else
 Create a new node N, and initialize its count to

1, and set N.[Fi].min-value and N.[Fi].max-
 value to Trans.[Fi].value.
 If N is the only child node of T, then
 T’s child-link (clink) is linked to N;
 Else link N1 (T’s youngest child node) to N,
 using N1’s sibling-link (slink)
Set T=N and increment p to point to next item in
the item-set P.

}

 2.2 Finding item-sets and the boundary
 values of attributes associated with them

Input: MVT.

� min_sup, the minimum support count
 threshold

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 53

� min_isetsize, the minimum size of the
itemset.

Output: The complete set of frequent item-sets,
and the range of values of information fields, i.e.
attributes, associated with them, depending on the
min_sup.

Method:

Scan the entire MVT using a recursive function
for depth-first-scan. Each time we come across a
leaf node or a node representing a branching
point in the MVT, take the set of all the
intermediate items between the root node and
that node, inclusive of that node. Also, for the
item-set thus obtained, if the conditions of
min_sup and min_isetsize, project the range of
values of the information field, i.e. min-max
values of each of the information fields Fi,
contained in the node corresponding to the item
having highest item number in that item-set.

3 Illustration
Apply the above algorithm to a sample database,
shown in Table 1, where we have the information
about the age, basic salary and hra (human resource
allowance) of each customer, and the various items
bought by him/her. The corresponding tree
structures, in different stages are shown in the
Figure 2 through Figure 4. Figure 4 shows the
complete tree structure after processing the 10th
transaction.

The nodes in the figures showing MVT are shown
numbered, “ (node number”, for the purpose of
illustration, and only the item number in the nodes
are shown. Other information fields have not been
shown individually in each of the nodes of MVT,
in order to keep the figures manageable and neat.
Instead, the range of values of attributes common
to an itemset in the tree has been shown by a
separate ellipse, as shown in Figure 2 and Figure
3.

 Table 1. Sample database

In Table 1, the age is in years, basic salary in
rupees and hra (human resource allowance) in
rupees. Age, basic and hra form the relevant
information part of the node, where as the item
numbers and their count comprise the item part of
the node.

 Figure 2. Tree structure after 1st transaction

The tree structure after processing of the first
transaction (age=43; basic=4886; hra=2777; items:
1,2,4,5,6,7,8,9) is shown in Figure 2. The MVT
starts with a root node, and the nodes, bearing the
item number, are created in the order of increasing
item number. Since each of the nodes, bearing the
respective item number, are newly created, the
minimum and the maximum value for each of the
associated information fields- age, basic, hra- are
same. In this case, each of the nodes numbered

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 54

from 1 to 8, has the following values in their
information fields.
age[min]=age[max]=43,
basic[min]=basic[max]=4886,
hra[min]=hra[max]=2777,
and the count value of each of the items is 1.

Figure 3. Tree structure after 2nd transaction

After the processing of the second transaction
(age=28; basic=6567; hra=2429;
items:1,2,3,4,5,6,7,8,9), the MVT has the structure
as shown in Figure 3. Here, since item number 1
was already present under the root, we increment
its count value by 1, and update its information
field as follows. As 28 is not greater than the stored
age[max] value of 43, we leave age[max] value
unchanged. However, 28 is lesser than the stored
age[min] value of 43. so, age[min] value is
updated to a new minimum value of 28. Next, the
basic salary of rupees 6567 is greater than the
basic[max] value , but not lesser than the
basic[min] value. Hence, basic[max] value is
updated to 6567, where as basic[min] remains
unchanged at 4886. Similarly hra[min] is updated
to 2429. Again, the node containing item number 2
already exists as a child of node1. Therefore, its
count is incremented by 1, and its associated
information fields are updated in a similar manner.

Thus, the values contained in the relevant
information fields of node 1 and node 2, after 2nd
transaction, are as follows:
age[min]=28, age[max]=43;
basic[min]=4886, basic[max]=6567;
hra[min]=2429, hra[max]=2777;
The next item in the transaction is 3. As node
number 2 has no child with item number 3, a new
node with item number 3 is created under node
number 2, as a sibling node of node number 3
having item number 4, with count=1, and other
information field values as:
age[min]=age[max]=28;
basic[min]=age[max]=6567;
hra[min]=hra[max]=2429;
Similarly, other nodes are created for the rest of the
items in the 2nd transaction. After processing the 2nd
transaction, the structure of MVT, and the values
contained in its nodes are shown in the Figure 3.
Figure 3 also shows the sibling link (slink) between
the child-nodes of the node, having node number as
2.

 Figure 4. Tree structure after 10th
 transaction

The complete structure of MVT, after the 10th
transaction, is shown in Figure 4. The values stored
in the nodes after 10th transaction are shown in
Table 2.

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 55

 Table 2. Values contained in the nodes of
 the MVT shown in Figure 4

Now, let find the item-sets and the boundary values
of attributes associated with the item-sets. Consider
once again the MVT after the 2nd transaction as
depicted in Figure 4.

 Figure 5. Mining the item-sets for
 the MVT shown in Figure 2.

Recall that the algorithm, for finding the quatitative
association between item-sets and the boundary
values of attributes associated with them, requires
that we consider the item-set between the root node
and a node that happens to be either a leaf node or
a branching point, inclusive of that node, and
project the range of values of relevant information
field as contained in the last item of that item-set,
i.e. the item having the highest item number. The
lines in Figure 5 denote the span of item-sets.
While scanning the MVT shown in Figure 5, we
find that the node number 2 is a branching point.
So, starting from node number 2, we move up till
we come to the root node, as shown by line
number1. The item-set thus obtained is {1,2}. The
relevant information contained in node number2,
pertaining to item number 2 of the item-set
obtained, is displayed as follows (refer to Figure 3
for values after 2nd transaction).
Count=2;
Age-range= 18-43;
Basic-range=4886-6567;
Hra-range=2429-2777;
Proceeding this way, we come across node number
8, a leaf node. In Figure 5, line 2 gives the item-set
corresponding to node number 8, and the result for
the same is as follows:
{1,2,4,5,6,7,8,9}
count=1;
Age-range= 43;
Basic-range=4886;
Hra-range=2777;
Similarly, line 3 gives the following result:
{1,2,3,4,5,6,7,8,9}
count=1;
Age-range=28;
Basic-range=6567;
Hra-range=2429;

Using the method described above, we can find the
result for the MVT, obtained after processing all
the ten transactions of the sample database, shown
in Figure 4. Table 3 shows the complete set of
result for the MVT, shown in Figure 4.

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 56

Table 3. Item-sets and the boundary values
 of attributes associated with them.

We also have the count value of the item-sets in the
result, besides the range of values of relevant
information fields i.e. attributes associated with
that item-set. As such, we can project only those
tuples in the result, whose count value satisfy the
minimum support threshold.

4 Experimental Results
We tested this methodology against the standard
IBM synthetic data[7], that contained wide range of
item numbers (more than 900) in the transaction.
To this data, we appended the three attribute fields
namely age, basic salary and hra, using data
generating programs based on randomization
functions in order to ensure that the final test data
remained unbiased. The data contained 49,100
transactions. The number of rules obtained under
different values of constraints such as minimum
support and minimum size of item-sets is shown in
Table 4. By increasing the support threshold and
minimum size of item-sets, we can filter out the
desired rules to get the result showing the boundary
values of attributes for only those item-sets that
satisfy the minimum threshold criteria.

Table 4. Number of itemsets obtained with
 IBM data[7] for different values of
 support threshold and minimum
 item-set size

Some of the rules obtained for a support threshold
of 0.01% and minimum itemset-size limit of 5 are
shown in Table 5 as follows.

Table 5. A Sample of results obtained with
 IBM data[7] for support threshold of
 0.01 % and min. Itemset-size limit of 5

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 57

5 Conclusion and Future work
The data structure obtained through this algorithm
is MVT, which can be used to represent a large
database in a compact form. MVT can be
constructed using single database scan. We have
used it here for quantitative association between
the item-sets and the boundary values of attributes
associated with them. Our research reinforces the
following: (1) While mining an extremely large
transaction database, we should discourage the use
of algorithms that require multiple scans of the
massive database or create huge data structures.
What is required is a method for developing
compact data structure, in minimum number of
scans of database, that can store entire relevant
information in a compact form to obtain the desired
association rule. (2) In order to obtain a
comprehensive result pertaining to a transaction,
stress should be laid upon an approach that takes
into account all the relevant information fields of
the transaction and tries to discover a rule based on
them.
 After having obtained promising result from
the IBM synthetic data, next we are going to obtain
the live data from a Cancer Hospital, and use this
algorithm to obtain quantitative rules pertaining to
various diagnostic parameters that can help in
determining the chances of cancer, as well as those
pertaining to the treatment process.

References: -

[1] J. Han and M. Kamber. Data Mining: Concepts
 and Techniques. Morgan Kaufman, San
 Francisco, CA, 2001.
[2] J. Han, J. Pei, and Y. Yin. Mining frequent
 patterns without candidate generation. In
 ACM-SIGMOD, Dallas, 2000.
[3] R. Hemlata, A. Krishnan, C. Scenthamarai,
 R. Hemamalini. Frequent Pattern Discovery
 based on Co-occurrence Frequent Tree. In
 Proceeding ICISIP-2005.
[4] R. Agarwal, T. Imielinski and A. Swami.
 Mining Association Rules between Sets of
 Items in large Databases in Proc. 1993- ACM-
 SIGMOD Int. Conf. Management of Data,
 pages 207-216, Washington D.C. May 1993.
[5] Ramakrishnan Srikant and Rakesh Agarwal.
 Mining Generalized Association Rules in Proc.
 of the 21st Int’l Conference on very large
 database, Zurich, Switzerland, December 1995.
[6] Ananthanarayana V. S, Subramanian, D.K.,
 Narasimha Murthy, M- Scalable, Distributed
 and Dynamic Mining of Association Rules
 using PC-Tree; pp559-566, HIPC, Bangalore,
 INDIA, 2000.
 [7] IBM/Quest/Synthetic data.

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 58

