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Abstract: In CBIR (Content-Based Image Retrieval), visual features such as shape, color and texture are extracted
to characterize images. Each of the features is represented using one or more feature descriptors. During the
retrieval, features and descriptors of the query are compared to those of the images in the database in order to rank
each indexed image according to its distance to the query. In biometrics systems images used as patterns (e.g.
fingerprint, iris, hand etc.) are also represented by feature vectors. The candidates patterns are then retrieved from
database by comparing the distance of their feature vectors. The feature extraction methods for this applications
are discussed.
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1 Introduction

A CBIR (Content-Based Image Retrieval) and
Biometrics systems can be viewed as two main
components: feature extraction and the search engine.
These systems are based on computer vision methods
to solve the image retrieval problem; i.e., the problem
of searching for images in large image databases.
Color, texture, local shape and spatial information, in
a variety of forms, are the most widely used features
in such systems. In response to a user’s query,
the system returns images that are similar in some
user-defined sense.

The basic idea of the CBIR is to compactly
describe an image by a feature vector and then match
query images to the most resemblant image within the
database according to the similarity of their features
(Fig. 1).
CBIR can be divided in the following steps:

Preprocessing: The image is first processed in
order to extract the features, which describe its
contents. The processing involves filtering, normal-
ization, segmentation, and object identification. The
output of this stage is a set of significant regions and
objects.

Feature extraction: Features such as shape,
texture, color, etc. are used to describe the content
of the image. Image features can be classified into
primitives.

A biometric system is a pattern recognition sys-

Figure 1: Schematic diagram of the image retrieval
process.

tem that recognizes a person on the basis of a feature
vector derived from a specific physiological or behav-
ioral characteristic that the person possesses.
Invariant features are extracted from the signal for rep-
resentation purposes in the feature extraction subsys-
tem. During the enrollment process, a representation
(called template) of the biometrics in terms of these
features is stored in the system. The matching subsys-
tem accepts query and reference templates and returns
the degree of match or mismatch as a score, i.e., a sim-
ilarity measure. A final decision step compares the
score to a decision threshold to deem the comparison
a match or non-match. The personal attributes used in
a biometric identification system can be physiological,
such as facial features, fingerprints, iris, retinal scans,
hand and finger geometry; or behavioral, the traits id-
iosyncratic of the individual, such as voice print, gait,
signature, and keystroking.
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A generalized diagram of a biometric system is shown
in Figure 2. The component which is of great impor-
tance is the feature extraction algorithm. Feature ex-
traction algorithm produces a feature vector, in which
the components are numerical characterizations of the
underlying biometrics.

Figure 2: A generic biometrics-based system.

Let us represent ann×n color image by the vector
functionI such thatI(x, y) denotes the(r, g, b) vector
at locationx, y and records how red, green and blue
a pixel appears. Suppose, we have a databaseM of
m images: M = I1, I2, . . . , Im and a query image
Iq. Image indexing is all about finding the subset of
imagesQ in M which are close toIq. Mathematically,
we might write:

Q = Ii : ||Ii − Iq||d < T, Ii ∈ M (i = 1, 2, . . . , m)
(1)

where||.||d is a distance measure which quantifies
the similarity of two images andQ contains all those
images inM which are sufficiently similar (their dis-
tance is below some user defined thresholdT , to the
query imageIq).

2 Representation of image content
Images features are divided to primitive and semantic
features. Primitive features are those features that
relate to the physical appearance of the image.
Among them we can list:
- aspect ratio of the image;
- file format;
- color depth: black and white, n-bit grayscale, n-bit
color;
- color: average color, color histogram or color
correlation for the image or a subset of its pixels;
- texture: physical features of a part (or all) of the
image when considered as a single texture;
- edge information: orientation, position and length
of edges detected in the image or a subset of it;
- shapes: contour, orientation, elongation, size,
bounding rectangle of shapes in the image;
- regions: areas of the image corresponding to
homogeneous areas of the image;

Semantic features are abstract representations of
images at different levels of detail, corresponding to
human perception of the images.

As we mentioned before features should be ex-
tracted automatically from the images. Automatic ex-
traction can be used only for the most primitive fea-
tures, like color (computing the average color, the
color histogram or color covariances of an area of the
image) or size of a region of the image.

2.1 Color
Image characterized by color features have many ad-
vantages:

• Robustness. The color histogram is invariant
to rotation of the image on the view axis, and
changes in small steps when rotated otherwise or
scaled [15]. It is also insensitive to changes in
image and histogram resolution and occlusion.

• Effectiveness. There is high percentage of rele-
vance between the query image and the extracted
matching images.

• Implementation simplicity. The construction of
the color histogram is a straightforward process,
including scanning the image, assigning color
values to the resolution of the histogram, and
building the histogram using color components
as indices.

• Computational simplicity. The histogram com-
putation hasO(M2) complexity for images of
sizeM × M . The complexity for a single im-
age match is linear,O(n), wheren represents
the number of different colors, or resolution of
the histogram.

• Low storage requirements. The color histogram
size is significantly smaller than the image itself,
assuming color quantisation.

As interesting color space we consider the Hue-
Saturation-Value(HSV) color space, because it is
compatible to the human color perception. Hue(H)
is represented as angle. The purity of colors is de-
fined by the saturation(S), which varies from0 to 1.
The darkness of a color is specified by the value com-
ponent(V), which varies also from0 (root) to 1 (top
level).
The coordinate system and theHSV color model are
shown in Figure 3 (a) and (b).

In caseRGB to HSV conversion, the obtainable
HSV colors lie within a triangle whose vertices are
defined by the three primary colors inRGBspace.
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a) b)

Figure 3: a)HSV coordinate system b)HSV color
model

The conversion formula is as follows :

H = cos−1

{

1
2 [(R − G) + (R − B)

√

(R − G)2 + (R − B)(G − B)

}

S = 1 − 3

R + G + B
[min(R, G, B)] (2)

V =
1

3
(R + G + B)

Color features used in image retrieval include
global and local color histograms, the mean (i.e., aver-
age color), and higher order moments of the histogram
[18]. Average and dominant colors can be used to fil-
ter out irrelevant images without too much computa-
tional cost. However, they do not support a detailed
comparison of the color appearance among images.
The global color histogram provides a good approach
to the retrieval of images that are similar in overall
color content.
An image histogram refers to the probability mass
function of the image intensities. This is extended for
color images to capture the joint probabilities of the
intensities of the three color channels. More formally,
the color histogram is defined by,

hA,B,C(a, b, c) = NProb(A = a, B = b, C = c)
(3)

whereA, B andC represent the three color channels
(R,G,Bor H,S,V) andN is the number of pixels in the
image.

A color imageI(x, y) of sizeX ×Y , which con-
sists of three channelsI = (IR, IG, IB), the color his-
togram used here is

hc(m) =
1

XY

X−1
∑

x=0

Y −1
∑

y=0

{

1 if I(x, y) in bin m

0 otherwise

(4)
where a color bin is defined as a region of colors.

Let h andg represent two color histograms. The
euclidean distance between the color histogramsh

andg can be computed as:

d2(h, g) =
∑

A

∑

B

∑

C

(h
∑

(a, b, c) − g(a, b, c))2

(5)
The intersection of histogramsh andg is given

by:

d(h, g) =

∑

A

∑

B

∑

C min(h(a, b, c), g(a, b, c))

min(|h|, |g|)
(6)

where |h| and |g| gives the magnitude of each his-
togram, which is equal to the number of samples.

For HSVspace distance formula is given by

dij = 1 − 1√
5
[(vi − vj)

2+

(si coshi −sj coshj)
2 + (si sinhi −sj sinhj)

2]1/2 (7)

which corresponds to the proximity in theHSVcolor
space.

Color moments have been successfully used in
many retrieval systems especially when the image
contains just the object. The first order (mean), the
second (variance) and the third order (skewness) color
moments have been proved to be efficient and ef-
fective in representing color distributions of images.
Mathematically, the first three moments are defined

µc =
1

MN

M
∑

x=1

N
∑

y=1

fc(x, y) (8)

σc = (
1

MN

M
∑

x=1

N
∑

y=1

(fc(x, y) − µc)
2)

1

2 (9)

sc = (
1

MN

M
∑

x=1

N
∑

y=1

(fc(x, y) − µc)
3)

1

3 (10)

wherefc(x, y) is the value of thec-th color com-
ponent of the image pixel(x, y), andMN is the num-
ber of pixels in the image.

Since only 9 (three moments for each of the three
color components) numbers are used to represent the
color content of each image, color moments are a very
compact representation compared to other color fea-
tures.The similarity function used for retrieval is a
weighted sum of the absolute differences between the
suitable moments.

2.2 Texture
Texture is a powerful regional descriptor that helps in
the retrieval process. Texture, on its own does not
have the capability of finding similar images, but it
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can be used to classify textured images from non-
textured ones and then be combined with another vi-
sual attribute like color to make the retrieval more ef-
fective.

Statistical methods, including Fourier power
spectra, co-occurrence matrices, shift-invariant prin-
cipal component analysis (SPCA), Tamura features,
Wold decomposition, Markov random field, fractal
model, and multi-resolution filtering techniques such
as Gabor and wavelet transform, characterize texture
by the statistical distribution of the image intensity.

The co-occurrence matrixC(i, j) counts the co-
occurrence of pixels with gray valuesi and j at a
given distanced. The distanced is defined in polar
coordinates(d, α), with discrete length and orienta-
tion. In practice,α takes the values0◦; 45◦; 90◦; 135◦;
180◦; 225◦; 270◦; and315◦. The co-occurrence ma-
trix C(i, j) can now be defined as follows:

C(i, j) = Pr(I(p1) = i∧ I(p2) = j | |p1 − p2| = d)
(11)

wherePr is probability, andp1 andp2 are positions
in the gray-scale imageI.

Texture features which can be extracted from gray
level co-occurrence matrices are as follows:
Angular Second Moments

∑

i

∑

j

C(i, j)2 (12)

Correlation
∑

i

∑

j(ij)C(i, j) − µiµj

σiσj
(13)

Variance
∑

i

∑

j

(i − j)2C(i, j) (14)

Inverse Difference Moment

∑

i

∑

j

1

1 + (i − j)2
C(i, j) (15)

Entropy
−

∑

i

∑

j

C(i, j)logC(i, j) (16)

Inertia (or contrast)
∑

i

∑

j

(i − j)2C(i, j) (17)

Cluster Shade
∑

i

∑

j

((i − µi) + (j − µj))
3C(i, j) (18)

Gabor filters have been successfully applied in
various computer vision applications and to texture
analysis and image retrieval. The general function-
ality of the 2D Gabor filter family can be represented
as a Gaussian function modulated by a complex sinu-
soidal signal. Specially, a 2D Gabor filterg(x, y) can
be formulated as

g(x, y; F, θ) =
1

2πσxσy
exp[−1

2
(
x̄2

σ2
x

+
ȳ2

σ2
y

)] exp[2πjF x̄]

(19)
here
[

x̄

ȳ

]

=

[

cos θ sin θ

− sin θ cos θ

]

·
[

x

y

]

, j =
√
−1

and

• σx andσy are the scaling parameters of the filter
and determine the effective size of the neighbor-
hood of a pixel in which the weighted summation
(convolution) takes place,

• θ (θ ∈ [0, π]) specifies the orientation of the
Gabor filters,

• F is the radial frequency of the sinusoid.

Gabor filters worked as local bandpass filters and
each filter is fully determined by choosing the four
parameters{θ, F, σx, σy}. Assuming thatN filters
are needed in an application,4N parameters need
to be optimized. The orientation parameterθ should
satisfyθ ∈ [0, π). W is the radial frequency of the
Gabor filter and is application dependent.σx andσy

are the effective sizes of the Gaussian functions and
are within the range[σmin, σmax].

The Gabor filterg(x, y; F, θ) forms complex val-
ued function. Decomposingg(x, y; F, θ) into real and
imaginery parts gives

g(x, y; F, θ) = r(x, y; F, θ) + ji(x, y; F, θ) (20)

where

r(x, y; F, θ) = g(x, y; F, θ) cos(2πF, x̄)

i(x, y; F, θ) = g(x, y; F, θ) sin(2πF, x̄) (21)

The Gabor filtered output of an imageI(x, y) is
obtained by the convolution of the image with the Ga-
bor functiong(x, y; F, θ). Given a neighborhood win-
dow of sizeW × W for W = 2t + 1, the discrete
convolutions ofI(x, y) with respective real and imag-
inery components ofg(x, y; F, θ) are

Cev(x, y; F, θ) =
t

∑

l=−t

t
∑

m=−t

I(x+l, y+m)r(x, y; F, θ)

(22)
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Codd(x, y; F, θ) =
t

∑

l=−t

t
∑

m=−t

I(x+l, y+m)i(x, y; F, θ)

(23)
The channel output is computed as

C(x, y; F, θ) =
√

(Cev(x, y; F, θ))2 + (Codd(x, y; F, θ))2

(24)
After applying Gabor filters on the image with

different scales and orientationk we obtain an ar-
ray of magnitudes. These magnitudes represent the
energy content at different scale and orientation of
the image (Figure 4). The following meanµsk and

Figure 4: Gabor filters convolution

standard deviationSsk of the magnitude of the trans-
formed coefficients are used to represent the homoge-
nous texture feature of the region

µsk =
1

MN

M
∑

x=1

N
∑

y=1

Csk(x, y; F, θ) (25)

Ssk =

√

√

√

√

M
∑

x=1

N
∑

y=1

(Csk(x, y; F, θ) − µsk)2 (26)

wheres = 0, 1, . . . , S − 1 andk = 0, . . . , K − 1.

The feature vector(FV) is constructed usingµsk

andSsk as feature components.

2.3 Shape
Shape based image retrieval is the measuring of sim-
ilarity between shapes represented by their features.
Shape content description is difficult to define because
measuring the similarity between shapes is difficult.
Therefore, two steps are essential in shape based im-
age retrieval, they are: feature extraction and sim-
ilarity measurement between the extracted features.
Shape descriptors can be divided into two main cat-
egories: region-based and contour-based methods.
Region-based methods use the whole area of an ob-
ject for shape description, while contour-based meth-
ods use only the information present in the contour of
an object. The shape descriptors described here are:

• shape descriptors - features calculated from ob-
jects contour: circularity, aspect ratio, dis-
continuity angle irregularity, length irregularity,
complexity, right-angleness, sharpness, directed-
ness.Those are translation, rotation (except an-
gle), and scale invariant shape descriptors.
It is possible to extract image contours from the
detected edges. We extract and store a set of
shape features from the contour image and for
each individual contour. These features are (Fig-
ure 5):

Figure 5: Shape and measures used to compute fea-
tures.

1. Circularitycir = 4pA
P 2 .

2. Aspect Ratioar = p1+p2

C .
3. Discontinuity Angle Irregularity

dar =

√

(
∑

|θi−θi+1|)

2π(n−2) .

A normalized measure of the average ab-
solute difference between the discontinuity
angles of polygon segments made with its
adjoining segments.

4. Length Irregularity

lir =
∑

|Li−Li+1|

K ,
whereK = 2P for n > 3 andK = P for
n = 3.

5. Complexity com = 10
−3

n . A measure
of the number of segments in a boundary
group weighted such that small changes in
the number of segments have more effect
in low complexity shapes than in high com-
plexity shapes.

6. Right-Anglenessra = r
n . A measure of

the proportion discontinuity angles which
are approximately right-angled.

7. Sharpness

sh =
∑ max(0,1−(

2|θ−π|
π

)2)

n .
A measure of the proportion of sharp dis-
continuities (over90).

8. Directednessdir = M
∑

Pi

. A measure

of the proportion of straight-line segments
parallel to the mode segment direction.
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wheren - number of sides of polygon enclosed
by segment boundary,A - area of polygon en-
closed by segment boundary,P - perimeter of
polygon enclosed by segment boundary,C -
length of longest boundary chord,p1, p2 - great-
est perpendicular distances from longest chord to
boundary, in each half-space either side of line
through longest chord,θi - discontinuity angle
between(i − 1)th andith boundary segment,r -
number of discontinuity angles equal to a right-
angle within a specified tolerance, andM - total
length of straight-line segments parallel to mode
direction of straight-line segments within a spec-
ified tolerance.

• region-based shape descriptor utilizes a set of
Zernike moments calculated within a disk cen-
tered at the center of the image.

Zernike moment of ordern and repetitionm is
defined as:

Znm =
n + 1

π

∫∫

x2+y2≤1

Vnm(ρ, θ)f(x, y)dxdy (27)

where:
- f(x, y) is the image intensity at(x, y) in Cartesian
coordinates,
- Vnm(ρ, θ) is a complex conjugate of
Vnm(ρ, θ) = Rnm(ρ)e−jmθ in polar coordinates
(ρ, θ) andj =

√
−1,

- n ≥ 0, andn − |m| is even positive integer.

The polar coordinates(ρ, θ) in the image domain
are related to the Cartesian coordinates(x, y) asx =
ρcos(θ) andy = ρsin(θ).
Rnm(ρ) is a radial defined as follows:

Rnm(ρ) =

n−m

2
∑

s=0

(−1)s[(n − s)!]ρn−2s

s!(n+|m|
2 − s)!(n−|m|

2 − s)!
(28)

The first six orthogonal radial polynomials are:

R00(ρ) = 1 R11(ρ) = ρ

R20(ρ) = 2ρ2 − 1 R22(ρ) = ρ2

R31(ρ) = 3ρ3 − 2ρ R33(ρ) = ρ3
(29)

The discrete approximation of Equation (27) is
given as:

Znm =
4(n + 1)

(N − 1)2π

N−1
∑

k=0

N−1
∑

l=0

f(k, l)Rnm(ρk,l)e
−jmθkl

(30)
0 ≤ ρk,l ≤ 1

where the discrete polar coordinates:

ρk,l =
√

x2
k + y2

l ; θkl = arctan(
yl

xk
) (31)

are transformed by:

xk =

√
2

N − 1
k+

−1√
2

; yl =

√
2

N − 1
l+

−1√
2

(32)

for k = 0, . . . , N − 1 andl = 0, . . . , N − 1.
To calculate the Zernike moments of an image

f(x, y), the image is first mapped onto the unit disk
using polar coordinates, where the center of the im-
age is the origin of the unit disk. Pixels falling outside
the unit disk are not used in the calculation.

BecauseZmn is complex, we use the Zernike mo-
ments modules|Zmn| as the features of shape in the
recognition of patterns.

3 Applications
The CBIR technology has been used in several ap-
plications such as fingerprint identification, biodiver-
sity information systems, crime prevention, medicine,
among others. Some of these applications are pre-
sented in this section

3.1 Medical applications
Queries based on image content descriptors can help
the diagnostic process. Visual features can be used to
find images of interest and to retrieve relevant infor-
mation for a clinical case. One example is a content-
based medical image retrieval that supports mammo-
graphical image retrieval.
The main aim of the diagnostic method in this case
is to find the best features and get the high classifica-
tion rate for microcalcification and mass detection in
mammograms.

The microcalcifications are grouped into clusters
based on their proximity. A set of the features was
initially calculated for each cluster:

• Number of calcifications in a cluster

• Total calcification area / cluster area

• Average of calcification areas

• Standard deviation of calcification areas

• Average of calcification compactness

• Standard deviation of calcification compactness

• Average of calcification mean grey level
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• Standard deviation of calcification mean grey
level

• Average of calcification standard deviation of
grey level

• Standard deviation of calcification standard devi-
ation of grey level.

Mass detection in mammography is based on
shape and texture based features. The features are
listed below :

• Mass area. The mass area,A = |R|, whereR is
the set of pixels inside the region of mass, and|.|
is set cardinal.

• Mass perimeter length. The perimeter lengthP
is the total length of the mass edge. The mass
perimeter length was computed by finding the
boundary of the mass, then counting the number
of pixels around the boundary.

• Compactness. The compactnessC is a measure
of contour complexity versus enclosed area, de-
fined as:C = P 2

4πA whereP andA are the mass
perimeter and area respectively. A mass with a
rough contour will have a higher compactness
than a mass with smooth boundary.

• Normalized radial length. The normalized radial
length is sum of the Euclidean distances from the
mass center to each of the boundary coordinates,
normalized by dividing by the maximum radial
length.

• Minimum and maximum axis. The minimum
axis of a mass is the smallest distance connecting
one point along the border to another point on the
border going through the center of the mass. The
maximum axis of the mass is the largest distance
connecting one point along the border to another
point on the border going through the center of
the mass.

• Average boundary roughness.

• Mean and standard deviation of the normalized
radial length. The meanµ and standard deviation
σ of the normalized radial length are computed
as

µi =
1

n

n
∑

k=1

Rk (33)

σ =

√

√

√

√

1

n

n
∑

k=1

(Rk − µi)2 (34)

where Rk is the normalized radial length at
boundary point(xk, yk).

• Eccentricity. The eccentricity characterizes the
lengthiness of a ROI. To this purpose a symmet-
ric matrixA is defined as follows

A11 =
N

∑

i=1

(xi − X0)
2

A12 = A21 =
N

∑

i=1

(xi − X0)(yi − Y0) (35)

A22 =
N

∑

i=1

(yi − Y0)
2

whereN is the number of the ROI pixels;xi and
yi are the coordinates of a generic pixel,X0 and
Y0 are the coordinates of the geometric center of
the ROI. Ifλ1 andλ2 are the eigenvalue of theA
matrix, in the elliptical approximation of the ROI
region, the semi-axis values will be

S1 =

√

|λ1

2
| S2 =

√

|λ2

2
| (36)

Then the eccentricity is given by

eccentricity =
S1

S2
(37)

with S1 < S2. An eccentricity close to 1 denotes
a ROI like a circle, while values close to zero
mean more stretched ROIs.

• Roughness. The roughness index was calculated
for each boundary segment (equal length) as

R(j) =
L+j
∑

k=j

|Rk − Rk+1| (38)

for j = 1, 2, . . . , n
L whereR(j) is the roughness

index for thejth fixed length interval.

• Average mass boundary. The average mass
boundary calculated as averaging the roughness
index over the entire mass boundary

Rave =
L

n

L

n
∑

j=1

R(j) (39)

wheren is the number of mass boundary points
andL is the number of segments.
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3.2 Iris recognition
A typical iris recognition system often includes iris
capture, preprocessing, feature extraction and feature
matching. In iris recognition algorithm, preprocess-
ing and feature extraction are two key processes. Iris
preprocessing, including localization, segmentation,
normalization and enhancement, is a basic step in iris
identification algorithm. Iris feature extraction is the
most important step in iris recognition, which deter-
mines directly the value of iris characteristics in ac-
tual application. Typical iris recognition system is il-
lustrated in Fig. 6.

Figure 6: Typical iris recognition stages

Robust representations for iris recognition must
be invariant to changes in the size, position and
orientation of the patterns. Irises from different
people may be captured in different sizes and, even
for irises from the same eye, the size may change due
to illumination variations and other factors. In order
to compensate the varying size of the captured iris
it is common to translate the segmented iris region,
represented in the cartesian coordinate system, to
a fixed length and dimensionless polar coordinate
system. The next stage is the feature extraction.

The following formulas perform the transforma-
tion.

θ ∈ [0, 2π], ρ ∈ [0, 1], I(x(ρ, θ), y(ρ, θ)) → I(ρ, θ)
(40)

x(ρ, θ) = (1 − ρ)xp(θ) + ρxi(θ)

y(ρ, θ) = (1 − ρ)yp(θ) + ρyi(θ) (41)

xp(θ) = xp0(θ) + ρp cos(θ)

yp(θ) = yp0(θ) + ρp sin(θ) (42)

xi(θ) = xi0(θ) + ρi cos(θ)

yi(θ) = yi0(θ) + ρi sin(θ) (43)

where I(x, y) is the iris region,(x, y) and (ρ, θ)
are the Cartesian and normalized polar coordinates
respectively,(xp, yp) and (xi, yi) are coordinates on
pupil and limbus boundaries along theθ direction,
(xp0, yp0), (xi0, yi0) are the coordinates of pupil and
iris centers.

The remapping is done so that the transformed
image is rectangle with dimension512 × 32 (Fig. 7).

Figure 7: Transformed region

Most of iris recognition systems are based on Ga-
bor functions analysis in order to extract iris image
features. It consists in convolution of image with com-
plex Gabor filters which is used to extract iris feature.
As a product of this operation, complex coefficients
are computed. In order to obtain iris signature, com-
plex coefficients are evaluated and coded.

The normalized iris images (Fig. 7) are divided
into two stripes, and each stripe intoK × L blocks.
The size of each block isk× l. Localization of blocks
is shown in Fig. 8.
Each block is filtered by

Gab(x, y, α) =

x+ k

2
∑

x− k

2

y+ k

2
∑

y− k

2

I(x, y) · g(x, y) (44)

The orientation angles of this set of Gabor filters are

〈αi|αi =
iπ

4
, i = 0, 1, 2, 3〉 (45)

Figure 8: Localization of blocks.
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Figure 9: Original block iris image (a) and real part of
Gab(x, y, αi) for αi = 0◦ (b),αi = 45◦ (c),αi = 90◦

(d), αi = 135◦ (e)

To encode the iris we used the real part of (44) as

Code(x, y) = 1 if Re(Gab(x, y, αi) ≥ th

Code(x, y) = 0 if Re(Gab(x, y, αi) < th (46)

The iris binaryCodecan be stored as personal
identify feature.

Figure 10: Iris Code
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