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Abstract: - The joint structural importance (JSI) is an important measure of how two components interact in
contributing to the system reliability. The value of JSI is positive (negative) if and only if one component
becomes more important (less important) when the other works. A consecutive-k-out-of-n system is a linear
arrangement of n components such that the system is failed if and only if some consecutive k components are
all failed. In this paper, we study joint structural importance JSI(i, j) in the consecutive-k-out-of-n system.
We completely solve JSI(i, j) for k =1 (the series system), k =n (the parallel system), k=n-1, and
k =n-2, respectively. For the other k , we prove that JSI(L, j)=JSI(L, k) <0< JSI(L, n)=JSI(L k+2)<
JSI(Q, j)<JISI@A, k+1), for 2< j’<k-1and k+3<j<n-1. For a fixed i, we prove that the graph of

JSI(i, j) has a W-shape property for max{l,i—k -1} < j<min{n,i+k+1 with JSI(i,i)=0 .

We also

present exact formula for JSI(i, j) and obtain many relations among them.
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1 Introduction

The Birnbaum reliability importance 1(i) of a
component i measures the improvement of the
system reliability R(P) over the improvement of the
reliability p; of that component [2]. The Birnbaum
reliability importance 1(i) is defined as

1(i) = 6R(P)/dp; =R(L, R) —R(0;, R),

where P denote all the component reliability except
that of the component i, R(1;,R) and R(0;,R) are
the system reliability with component i working and
failed, respectively. Note that the system reliability
R(P) can be computed only when the reliabilities of
all components are well defined. Without the
information of component reliabilities, we need to
know the relative importance of the locations so that
more reliable components can be assigned to the
more important locations to maximize the system
reliability. The structural Birnbaum importance is a
special kind of the Birnbaum reliability importance
where all the component reliabilities are set equal to
p so that the importance measure will depend only
on the structure of a system. Many kinds of structural
Birnbaum importance indices have been discussed
[3-6, 16-18, 20, 21].

The joint reliability importance JRI(i, j) of two
components i and j measures how these two
components in a system interact in contributing to the
system reliability R(P) . The joint reliability
importance JRI(i, j) is defined as follows.

JRI (i, j) = 8*R(P)/op,0p; = R(L,,1,, P, ;) +

R(Oi' Oj’ PIJ) - R(li’ Oj’ PIJ) - R(Oillj' Pi,j)r
where the P, ; will be omitted when no confusion is
possible.  Joint reliability importance was first

proposed independently by Hagstrom [10] and by
Hong and Lie [13]. Based on the definition of
Birnbaum reliability importance, JRI(i, j) can be
interpreted as the change of the Birnbaum reliability
importance of component i caused by component
j’s deteriorating from working to failed. The value
of JRI(i, j) is positive (negative) if and only if one
component becomes more important (less important)
when the other works. Similar to the problem in
Birnbaum reliability importance, many researchers
have studied joint structural importance (setting all
p;i = p) in many systems: the fault tree [11], the
two-terminal system [1, 13, 19], the k-out-of-n
system [12, 15], etc. Jan first studied joint structural
importance in the consecutive-2-out-of-n systems
[15].

A consecutive-k-out-of-n system consists of an
ordered sequence of n components where the system
fails if and only if any k consecutive components
are all failed. Relative to low reliability of a series
system and high reliability but very expensive
hardware of the parallel system, the consecutive-k
system has attracted many researchers [5-9, 15-18,
21]. For the consecutive-2 system, Malon [17] and
Du and Hwang [9] independently solved a problem
called the invariant optimal assignment, which has
the problem of finding the rank of structural
Birnbaum importance as one of its special cases.
Malon [18] also solved the assignment problem for
k=n-1,n-2, and proved that an invariant optimal
assignment does not exist for 3<k <n-3, which
intensified the need to compare structural Birnbaum
importance.
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In this paper, we concentrate on the joint
structural importance in the consecutive-k system.
We first state several useful formulas for computing
system reliability in Section 2. Then we study joint
structural importance, denoted by JSI(i, j), in the
consecutive-k system in Section 3. We completely
solve JSI(i, j) in the consecutive-k-out- of-n system
for k=14,n-2,n-1,n. For the other k, we first
study the case of i =1 and make comparisons among
JSI(L, j). On the other hand, given a fixed i, we
compare the values of JSI(i, j) and present the
W-shape property of the JSI function. We also find
the exact formula for some JSI (i, j) and discuss the
relationship among them. Finally, we make a
conclusion in Section 4.

2 System Reliability

For a consecutive-k-out-of-n system, let R(n)
denote the system reliability, and R, (L) and R,(0;)
denote the reliabilities of the system where the
component i is workmg and failed, respectively.
Note that R(k)=1-q* and R(n) =1 for 0<n<k-—
1, where gq=1-p.

Lemma 2.1. (See [14]) For n>k +1, the reliability
R(n) of a consecutive-k-out-of-n system satisfies the
following recursive relations

() R()=3%5_,pq" R(n-m

(i) R(nN)=R(n-1) - pq R(n k -1.

Note that for n >k, R(n) is decreasing in n.
Corollary 2.2. R(n) =[R(n+k)—-R(n+k +1)]/pq" .
Proof. By Lemma 2.1 (ii). H

For convenience, by Corollary 2.2, we backward
derive the reliabilities of a consecutive-k-out-of-n
system for —k -1<n<-1.

Definition 2.3. The reliability of consecutive-k-out-
of-n system for —k—-1<n<-11is

p, n=-1,
R(n)=+0, —-k<n<-2,
1p’g“*, n=-k-L1.

Lemma 2.4.
() R(n)=pR, (1) +aR,(0;) .
(i) R,@)=R(@{-DR(n-i).
(iii) Ry(0;) =[R(n) - pR(i—HR(n-1)]/q.
Proof. Statements (i) and (ii) follows from the
definition of the system reliability according to
component i working or not. Statement (iii) follows
immediately from (i) and (ii).
Lemma 2.5. (See [20])

PRI —DR(n—i)<R(n) <R()R(nN-1).
Lemma2.6. R(DR(j)>R(>i+ j+1).
Proof. The difference between R(i)R(j) and R(i +
j+1) is just the reliability of the cases that both the
first i-component subsystem and the last j-
component subsystem are working and the whole
(i+ j+1) -component system is failed due to the

Proof. JSI(i,

(i +1) -st component is failed. Hence
R(HR(j)— R(i+j+1)
= Y% PA'R(i-1-1)X . PA"R(j~1-m)>0. [

3 Joint Structural Importance

In this section, we first consider the joint structural
importance in the consecutive-k system for k =1, n—
2,n-1,n. Note that a consecutive-k system is a
series system for k=1, and a parallel system for
k=n.

Theorem 3.1. Consider a consecutive-k-out-of-n

system.

(i) For k=1 (the series case), JSI(i, j)=p"2>0
forany i=j.

(i)For k=n (the parallel case), JSI(i, j)=—-q"
<0 foranyi=j.

Proof. By definition, JSI(i, j)=R(4,1;)-R(%,0;)

-R(0;,1)) +R(0;, 0;).

(i) For k=1, JSI(i, j)=p"*-0-0+0=p"2>0.

(ii)For k=n, JSI(, j)=1-1-1+(1-q"*)=—q""°
<0. H

Theorem 3.2. Suppose k=n-1. JSI(i, j) <0 for

all i # j,except JSI(1,n)>0.

Proof. By definition,

(i) JSIdn)=1-1-q" )-1-9"")+(1-q"")=
q"?>0.

(ii) For j;tn S j) 1- (1 q"?) -1+ (1-
pa" >~ q" %) = —pg"

(|||)For1<|<J<n JSI(i, 13) 1
2pg"*—q™ -2pq"

Hence, in a consecutlve (n— 1) -out- ofn system,

JSI(i, j)<0 forall i j,except JSI(L,n)>0. [

Theorem 3.3. Suppose k=n-2. JSI(i, j) <0 for

all i # j,except JSI(L,n)=0, JSI,n-1)>0,and

JSI(2,n-1) is positive, negative, and zero for

p<1/2, p>1/2,and p=1/2, respectively.

j) are computed according to seven

cases as follows. For the first three cases, we

compute JSI(i, j) by

JSI(@, j) =R(,1;)-R(, 0;)-R(0;,1;) +R(0;, 0;).

(i) 3S1(L,2)=(1-9"*)-(L-q"*)-(L-q"*) + (1~
9" =-pg"“ <0,

(i) For 3<j<n- 2 JSI(l j)=1- 1 (1 q"® -
pa" ) +@-q"* - pg"*)=—pqg"

(iif) JsI(t,n-1) = 1 a- q"3 pq" %) - (1 q” )+
(1-9"°-pg"?)=q"*>0.

In the following cases, we compute JSI(i, j) by
JSIQ, j) =[R(;,1;) - R(0;, 1j)]-[R(, 0;) - R(0;,
0;)I.

(iv) JSI(L, n)=pq"*-pg"3=0.

(v) For 3<j<n-2 , JSI(2, j)=0-(pq"™*+

q"?) <0.

(vi) JS1(2,n-1)=q"° - p(q">+pg"*)=q"* (-
2p). Thus JSI(2,n-1) is positive, negative,
and zero for p<%/2, p>12, and p=Y2,
respectively.

1+(1—
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(vii) For 2<i<j<n-1, JSI(i, j)=0-(q""* +
2pq"*) <0.
In the following, we state some properties of joint
structural importance.
Lemma 3.4. Consider a consecutive-k-out-of-n
system.
(i) JISI(@, j)=JdSI(n—i+L,n—j+1).
@ity JsI(, j)=JSI(j,i).
(iif) JSI(i,i)=0.
(iv) JSI(i, j)=0 for 1<i, j<n<Kk.
Proof. Since a consecutive-k-out-of-n system is
symmetric with respective to the middle location(s),
we have Statement (i). Statements (ii) and (iii)
follows immediately the definition of joint structural
importance. If n<k, then R(1;,1;)=R(0;,1;)=
By Lemma 3.4 (iv), throughout this thesis, we
discuss JSI in the consecutive-k-out-of-n system for
n>k . Given a fixed i, the following lemma
simplifies the calculation of the difference between
JSI(i,I) and JSI(i, j).
Lemma 3.5. Given a fixed i, the difference between
JSI(i, 1) and JSI(i, j) is JISI(i,1)—JSI(i, j) =R,
0;,4)-R(,1;,0,)+R(0;,1;,0,)-R(0;,0;,1,).
Proof. By the definition of JSI , we have
JSI(i, )= JSI, j)
Z[R(li’ll)_R(li’lj)]+[R(1i'Oj)_R(li’Ol)]

+[R(0"1j)_R(Oi’ll)]+[R(0i’OI)_R(Oi’Oj)]'

Extend each term to include all the reliabilities of
three components. We have
JSI(i, I)-JSI, j)
:{[pR(liilj'll)+qR(li’Oj'll)]_[pR(li'lj’ll)
+0R(;,1;, 0)1}+{[pR(, 0;,1) +qR(, 0;,0,)]
_[pR(li ' 1j' O|)+ qR(li ' Oj’ 0| )]}+{[ pR(Oi’lj ' 1|)
+qR(0i’1j’ OI)]_[pR(Oi’lj’ll)+qR(Oi' Oj’ll)]}
+{[pR(Oi’1j’ OI)+qR(Oi' Oj’ OI)]_[pR(Oi’ Oj'll)
+0R(0;, 0, 0)1}
=R(1,,0;1)-R(.1,,0,) +R(0,,1,,0,)-R(0;,0,.1,).
0
In a consecutive-2 system, Jan [15] proved that
JSI(4,2)<0 and JSI(L, j)>0 for 3<j<n. She
also proved that JSI(1, j)=JSI(L,n—j+4) in the
consecutive-2-out-of-n system. In the following, we
extend these results to the consecutive-k system.
First, consider i =1.
Theorem 3.6.
(iyFor 2< j<k, JSI(L j)=-pg“?R(n—k -1) <0.
(if) For j=k+1, JSI(L j)>O0. Furthermore,
JSI(Lk+1)=q“*R(n—k-1) for n>2k , and
JSI(Lk+1)=qg“" for k+1<n<2k.
(iii) For j>k+2, JSI(L j)=pg“’[R(j—k-2)x
R(n-j)-R(n-k-1)]. Furthermore, JSI(L, j)>0
for n>2k,and JSI(L, j)=0for k+2< j<n<2k.
Proof. For 2< j <k, by definition,

ISIQ J) =[R(, 1) =R(0,,1))]-[R(L, 0,) = R(0,, 0;)]

=0-pg“*R(n—-k-1)<0.

For j>k+1, by definition and Lemma 2.4 (iii),

JSI(, j)

=pg“"R(j—k-2)R(n~j)~ pa" 'R, 4 (0} ,)

= pg“’[R(j —k =2)R(n - j) ~R(n—k -1)].

Consider j=k+1. JSILk+1)=qg“'R(n—k-1)
>0 for n>2k, and JSI(L k+1)=q**>0 for k+
1<n<2k. Onthe other hand, if k+2< j<n<2k,
then JSI(1, j)=0; and if n> 2k, then JSI(L, j)>0
by Lemma 2.6. U

Theorem 3.7. JSI(L, j)=JSILn+k+2—-j) for
k+2<j<n.
Proof. Immediately from Theorem 3.6 (iii). U

Theorem 3.7 shows that the JSI of the first and
the j-th locations is equal to that of the first and the
(n+k+2-j) -th locations. Thus we can discuss
JSI(L, j) only for j<(n+k+2)/2. In the following,
we find an upper bound and a lower bound of
JSI(, j) for j>k+2.

Theorem 3.8. For j>k+3,
JSI(L, n)=JSI(L, k+2)<JISI(, j)<JISI(L,1+K).
Proof. By Theorem 3.6 (ii) and (iii), for j>k +2,
JSI(L, k+1)-JSI(L, j)
=q’[R(n—k -1~ pR(j—k=2)R(n~ j)]
= qHRnfkfl (Oj—k—l) > 0.

Similarly, by Theorem 3.6 (iii), for j>k +2,

JSI(L, j)—JSI(, n)

= pq“*[R(j—k -2)R(n- j)-R(n—k - 2)].
By Lemma 2.5, JSI(L, j)>JSI(4,n) for j>k+2,
and JSI(1, k+2)=JSI(L, n) by Theorem 3.7. Hence
JSIL n)=JSI(L,k+2)<JISI(, j)<JISI(L,1+k) for
j=>k+3. 0
Corollary 3.9. For 2<j<min{fi+k+1n} and
i=1, the rank of JSI(L j) are as follows.
JSI(L, j)=J3SI(L k)<0<JSI(L, n)=JSI(L, k+2)<
JSI j)<JISIL k+1), for 2<j'<k-1 and k+
3<j<n-1.
Proof. By Theorems 3.6-3.8. [

Figure 1 shows a graph of the joint structural

importance JSI(i, j) for i=1.
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Fig.1. JSI(i, j) for n=26, k=5, i=1,
and 1< j<26.

In the following, we study JSI(i, j) for i>1.
First, consider max{L,i—-k+1}< j<i-1.
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Theorem 3.10. For 2< j<i<k+1, JSI(i, j-1)—
JSI(i, j) = pg“?R(n— j—k) . Furthermore, JSI(i,
j-1)>JSI(, j) for n>j+k-1 and JSI(i, j—
1)=J3SI(, j) for n< j+k-2.
Proof. For 2< j<i<k+1, by Lemma 3.5,

JSI(i, j—-1)—JSI(, j)

= [R(liilj—l’ Oj) - R(li’ 0j—1’ 11)]

+[R(0i’ Oj—l' 1j)_ R(Oi ' 1j—l’ Oj)]

=0+ pg“’R(n— j—k).
Hence we have Theorem 3.10 immediately. [
Theorem 3.11. Suppose 1<i, j<k and j=#i.
(i) For n<i+k-1,

o= jpg 7, 1<j<n-—k,
IS, 1) {—(n—k+]/p)qu‘2, n—k+1< j<k.
(i) For i+k<n<2k, JSI(i, j) =—min{i, i¥pg 2.
(iii) For n> 2k, JSI(i, j)=—qu‘22,1=1R(n—k—I).
Proof. Consider 1<i< j<k <n. By definition,
381G, j)=-pg*TLR(n—k-1).
Ifi+k<n<2k, then 0<n-k-1<k-1 and thus
JSIG, )=—ipg*?. If k<n<i+k-1, we have
n-k-1>-1>n-k-i and n-i+1<k . Since
R(-1)=1/p and R(n) =1 for 0<n<k-1, we have
SIG, )=—(n-k+1p)pg*? for i+1<j<k .
Moreover, by Lemma 3.4 (i), JSI(i, j)=JSI(n—i+
Ln—j+1)=JSI(n—i+1 j)=JSI(i,n— j +1) for
n—i+2<j'<k, ie, i-1>n-j+1>n-k+1.
Hence if n<i+k -1, then
381G, j)=—(n—k+2)pg“? for n—k+1< j<k.

On the other hand, consider 1< j<i<k. By
Theorems 3.6 (i) and 3.10,
JSI@i, j)=JSI(i,1) -3 ,[3SI(i,m—1)—JISI (i, m)]
=% PG *R(N—m—k).
If n<i+k-1and 1< j<n-—k,we have JSI(i, j) =
—jpg“?; and if i+k <n<2k, we have JSI(i, j) =
— jpg“*. Hence Theorem 3.11 is proved. d
Remark 3.12. In Theorem 3.11, we prove that the
values of JSI(i, j) is linear for fixed i<k, n<2k,
and 1< j<min{n-k,i}. For n>2k, JSI(, j) is
no more a multiple of JSI(i,1) since
R(n—k—j)=1.
Theorem 3.13. For fixed n and k , if i= j and
n—k+1<i, j<k, then
JSI(i, j)=—(n—k+1/p)pg“ 2.

Proof. Immediately follow from Theorem 3.11
which depends only on n, k,and p. H
Theorem 3.14. Suppose k+2<i<2k.
(i) Jsi(i, j-1)>JsI(, j) for k+1< j<i-1.
Furthermore,

JSI(i, j—1)-JSI(, j)

= pg*R(j ~2)R(n- j -K) _

+pg*R(j —k = 2)[R(n-i)~R(n~ j)].
(i) ISI(i, j—1) > JSI(, j) for i—k+1<j<k.
Furthermore,

JSI(i, j-1)-JSI(, j)= pa**R(n—j—k)>0.

Proof. (i) By Lemmas 2.4 (iii) and 3.5, for

k+1<j<i-1,
JSI(i, j—1)-JsI, j)
= pq“'R(j—k-2)R(n-1)
+{[R(i—-2)-pad“"R(j -k -2)Ipg* *R(n~ j—k)
= pa*'R(j -k =2)[R,;(0.;) - pa“*R(n— j-K)I}
= pq“*R(j-2)R(n~ j—k)
+pg*R(j—k=2)[R(n—i)-R(n- j)I.
(i) By Lemma 3.5, for i—k+1< j<k, JSI(i, j—1)
—JSI(i, j)=0+ pg“*°R(n— j—k)>0. 0
Theorem 3.15. Suppose i> 2k .
JSI(i, j—1) > JSI(i, j) for i—-k+1< j<i-1.
Furthermore,
JSI(i, j—1)—JSI(, j)
= pq““R(j-2)R(n— j—k)
+pg*R(j—k=2)[R(n-1)-R(n~ j)I.
Proof. Similar to the proof of Theorem 3.14 (i) [
Corollary 3.16. Given a fixed i, JSI(i, j) is
decreasing for max{l,i—k}< j<i-1.

Proof. By Theorems 3.10-3.15. U
In the following, we consider i+1< j<min{
i+k,n}.

Theorem 3.17. Suppose i<k. JSI(, j) < JISI(i,
j+1) for k< j<min{i+k -1, n-1}. Furthermore,
JSI(i, j+2)-JSI(, j)
=pq“’R(j—k-DR(n—j-1)
+pg RN~ j-k-D[L-R(j-1)].
In fact, JSI(i, k +1)— JSI(i, k) =q“ *R(n—k -1) .
Proof. By Lemma 3.5, for i<k and k+1<j<
min{i+k -1, n—1},
JSI(i, j+1)—JSI(, j)
= pg“'R(n— j—k -1 +{pg“ *R(j -k -1)
x[R(n—j-1)~pq“'R(n- j—k-1)]
= pgR(n = j =k =D[R;4(0)) - pa“*R(j —k -1)I}
= pq“*R(j—k-1)R(n—j-1)
+pq“*R(n— j—k-D[1-R(j-1)].
Note that R(—l):]/p. Fori<k=j, JSI(i, j+1)—
JSIGi, j)=9*?R(n—j—-1)>0. Hence, for i <k and
k<j<min{i+k-1,n-1}, JSI(i, j)<JSI(i, j+1) .
O

Corollary 3.18.
min{i+Kk, n},
JSI(i, j)
=pq 3, SR(M-2)R(n—k —m)
+pq* * 205 R(n—2k —m) 37, R(m -1 -1)
—(n—k+1/p)pq*?, n<i+k-1,
+{—ipg“?, i+k<n<2k,
- pg“’Y L R(n—k—1), n>2k.

Proof. Note that JSI(i, j) = JSI(i, k) + X )2 [ISI (i,
m+1) — JSI (i, m)] Corollary 3.18 follows
immediately from Theorems 3.11 and 3.17. H
Theorem 3.19. Suppose i>k. JSI(i, j) < JISI(i,
j+1) for i+1< j<min{i+k-1, n-1}.
Furthermore,

Suppose i<k. For k+1<j<
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JSI(i, j+1)—JSI(, j)
=pq“’*R(j—k-DR(n-j-1)
+pq““R(n— j—k-D[R(~1) - R(j ~D].
Proof. By Lemma 3.5, for i>k and i+1< j<min{
i+k-1,n-1},
JSI(i, j+2)-JSI(i, j)
= pg“'R(i—-DR(— j-k-1)+{pq“ *R(j —k -1)
x[R(n-j-1) - pa“'R(n—j-k-1)]
= pq“'R(n - j -k -D[R;,(0,) - pg“*R(j -k 1)}
= pg“*R(j—k-DR(n - -1)
+Pg*R(N - j—k-DIR(~1) ~R(j D).
Hence JSI(i, j) < JSI(i, j+1) for ik and i+1< |
<min{i+k-1,n-1}. U
Corollary 3.20. Given a fixed i, JSI(i, ) is
nondecreasing for i +1< j<min{i +k, n}.
Proof. By Theorems 3.11, 3.17, and 3.19. U
In the following, we make two more comparisons.
Theorem 3.21. JSI(i,i+k)>JSI(i,i+k+1) for
n>i+2k.
Proof. By Lemmas 2.4 (iii) and 3.5,
JSI(,i+k)—JSI(i,i+k+1)
={R(@i-Dg“'[R(n—i—k-1)— pg“'R(n—i—2k —1)]
~R(i-)(1-q")pg'R(n—i-2k -1)}
+ R 1(0) pg R(n—i—2k ~1)
= qu(i -DR,.4(0)
+PaR5 (0)R(N—i -2k -1).

0
Theorem 3.22. For n>i+2k-1 and i>k ,
JSI(i,i+k)>0. Furthermore,

ISIG,i+K) =X pa’ [X ! pa“*R(i—k +1-1)
XZrJn:O pg“ ™ R(N—i—2k +m)]
+0“'R(i —1)R(n—i—Kk).

Proof.

JSI(i i +k)

—[Z PO'Riys .(1)2 pg“ " "R(n—i -2k +m)

+q“R(| 1)R(n—|—k)]

—[Z Pa'R.y . (0 )Z pg“"R(n i -2k +m)]

_q“R(l 1)R(n—|—k)

+Z:(:02 pq [R|+k—2—| (1|) R|+k—2—| (O|)]

X Yo P "R(N —i = 2k +m)

> 0.

H

Theorem 3.23.  JSI(i,i—k)>JSI(i,i—k-1) for

n>i+2k.

Proof. By Lemma 3.4 (i) and Theorem 3.21,
JSI(i,i—k)=JSI(i,i—k-1)
=JSI(n+1-i,n+1-i+Kk)
=JSI(n+1—-i,n+1-i+k+1)
>0

H
For a fixed i, in the following, we discuss the
graph of JSI for max{l,i—k -1} < j<min{i+k +

1,n} accordingto i<k, i=k,and i>k.

Corollary 3.24. For a fixed i<k and 1< j<i+

k +1, the rank of JSI are as follows.

(i) 0>JSI(i,2)>JSI(i,2)>--->JSI(i,i—1)>
JSI(i,i+1)=JSI(i,i+2)=---=JSI(i, k),

(it) ISI(i,i+1) =---=JSI(i,k) < ISI(i,k +1) <
JSI(i,k+2)<---<JSI(i,i +k), and

(i) JSI(i,i+k)>JSI(i,i+k+1).

Furthermore, the graph of JSI(i, j) has a W-shape

with a flat segment for 1< j<i+k+1.

Proof. By Theorems 3.10, 3.11, 3.17,and 3.21. [

Corollary 3.25. For a fixed i =k and 1< j<min{

i+k+1,n}, the rank of JSI are as follows.

(i) 0>JSI(i,2)>JSI(i,2)>--->JISI(i,i—-1)

(i) ISI(i,i+2) < JSI(i,i+2)<---< ISI(i,i+k), and

(iit) JSI(i,i+k)>JSI(i,i+k+1).

Furthermore, the graph of JSI(i, j) has a W-shape

for 1< j<i+k+1.

Proof. By Theorems 3.10, 3.11, 3.19, and 3.21. [

Corollary 3.26. For i>k and i—k-1< j<min{

i+k+1,n}, the rank of JSI are as follows.

(i) Jsi(i,i—-k)>JSI(i,i—-k+1)>--->J3SI(i,i-1) ,

(i) ISI(i,i+2) < JISI(i,i+2)<---< ISI(i,i+k) ,

(iii) JSI(i,i+k)>JSI(i,i+k+1), and

(iv) JSI(i,i—k—=1) < JSI(i,i—k).

Furthermore, the graph of JSI(i, j) has a W-shape

for i—k-1< j<i+k+1.

Proof. By Theorems 3.14, 3.15, 3.19, 3.21, and 3.23.

0

Figure 2 shows a graph of the joint structural

importance JSI(i, j) for i>k and i—k-1<j<i+

k+1.
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Fig. 2. JSI(i, j) for n=50, k=14, i=20,

and 5< j<35.

In the following, we consider the JSI of the last
k components for a fixed i.
Theorem 3.27. JSI(i, j)> JSI(i, j+1) for j>i+k
and n—k+1<j<n-1.
Proof. For j—i>k+1, by Lemmas 2.5, 3.4 (iii), and
3.5,
JSI(i, j)=JSI(, j+1)
=R(@i-1)pa““"R(j—k-i-1)-pg“'R.,,(0)
=R(i-1)pg“'R(j—k-i-1)—pg*”’
x$[R(J—k-=1) = pRI-DR(j-k-i-1)]
= pg“?’[R(i—DR(j—k -i—-1)—-R(j—k-1]>0.
On the other hand, for j—i=Kk,
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JSI@, j)-JSIG, j+D)=R@i-1g“*>0. O

We compare Theorem 3.27 with Theorems 3.17
and 3.19 as follows.

Remark 3.28.

(M) If j>i+k and n—k+1<j<n-1, then
JSI(i, j)>JSI(, j+1)

(i) fi<j<i+k and n-k+1< j<n-1,then
JSI(i, j) < JISI(i, j+1).

Next, we compare JSI (i, n) with JSI(i,n—Kk).
Theorem 3.29. JSI(i,n) <JSI(i,n—k) for i<n-
3k .

Proof. By Lemma 3.5,
JSI(i, n—k)—JSI(i, n)
=2 oR e 0) PA T X5 pa T
~ 2R 22 (0) PA 205 pa

K2 PRy k-2-m
= E[Rn—Zk-m (1i) - Rn—zk—1+l (Oi)]pq mz:o pq

>0.
0

4 Conclusion

In this paper, we study joint structural importance in
the consecutive-k-out-of-n system. We introduce the
definitions of Birnbaum reliability importance, joint
Birnbaum importance, and joint structural
importance and state several useful formulas for
computing the reliability of consecutive-k system. In
Section 3, we first completely solve JSI(i, j) for
k =1 (the series system), k =n (the parallel system),
k=n-1,and k=n-2, respectively. For the other
k , we study JSI(i, j) for i=1 and show that the
values of joint structural importance is symmetric to
L(n+k+2)/2]and [(n+k+2)/2]. We also prove
that JSI(L, j)=JSI(L, k) <0< JSI(L, n)=JSI(L, k+
2)<JSI(, j)< IS, k+1), for 2<j' <k-1 and
k+3< j<n-1. On the other hand, given a fixed i,
we prove that the graph of JSI(i, j) has a W-shape
property for max{l,i—k-1}< j<min{n,i+k +1}
with JSI(i,i)=0. We show that the values of
JSI(i, j) is decreasing for the last k components.
Note that the results of JSI is related to those of
Birnbaum structural importance.
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