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Abstract: - In this paper we study some problems related to grid n-ogons. A grid n-ogon is a n-vertex 
orthogonal simple polygon, with no collinear edges, that may be placed in a )2/()2/( nn ×  square grid. We will 
present some problems and results related to a subclass of grid n-ogons, the THIN grid n-ogons, in particular a 
classification for this subclass of polygons. We follow by presenting the solution of the MINIMUM VERTEX 
GUARD problem for the MIN-AREA and for the SPIRAL grid n-ogons. Finally the solution of the MAXIMUM 
HIDDEN VERTEX SET problem for THIN grid n-ogons is also presented. 
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1 Introduction 
In the field of visibility problems, guarding and 
hiding are among the most distinguished and 
exhaustively studied problems. In visibility 
problems we are given as input a simple polygon 
(simple closed polygonal curve with its interior). In 
guarding we need to find a minimum number of 
guards positioned in the polygon, such that these 
guards collectively see the whole polygon. Two 
points in the polygon see each other, if the line 
segment connecting them lies entirely in the 
polygon. In hiding, we need to find a maximum 
number of positions in the polygon, such that no two 
of these positions see each other. 
The guarding problems started during a conference, 
in 1976, when Victor Klee, posed the following 
problem, which today is known as the original art 
gallery problem: How many stationary guards are 
needed to guard an art gallery room with n walls? In 
the abstract version of this problem, the input is a 
simple polygon P in the plane, representing the floor 
plan of the art gallery room and a guard is 
considered a fixed point in P with 2π range 
visibility. A set of guards covers P, if each point of 
P is seen by at least one guard. Many variations of 

the original art gallery theorem have been studied 
over the years, such as: where the guards may be 
positioned (anywhere or in specific positions, e.g., 
vertices), what kind of guards are to be used (e.g., 
stationary guards versus mobile guards) and what 
assumptions are made for the input polygon (such as 
being orthogonal) (see [9]). The “opposite” problem 
of hiding a maximum number of objects from each 
other in a given simple polygon can have a practical 
application in computer-games, where a player 
needs to find and collect or destroy as many objects 
as possible. Being unable to see the next object 
while collecting an object makes the game more 
interesting. Such as the guarding problems, this 
problem has many variations [2]. 
In this paper, of the guarding problems, we will 
consider the MINIMUM VERTEX GUARD (MVG) 
problem that is the problem of finding the minimum 
number of guards placed on the vertices (vertex 
guards) needed to guard a given simple polygon. 
And of the hiding problems, we will consider the 
MAXIMUM HIDDEN VERTEX SET (MHVS) problem 
that is the problem of finding the maximum number 
of vertices of a given simple polygon, such that no 
two vertices see each other. Both problems are NP-
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hard [3,7]. Important subclasses of polygons are the 
orthogonal simple polygons (simple polygons 
whose edges meet at right angles). Indeed, they are 
useful as approximations to polygons; and they arise 
naturally in domains dominated by Cartesian 
coordinates, such as raster graphics, VLSI design, or 
architecture. The MVG and MHVS problems are 
still NP-hard for orthogonal polygons. 
This paper has the intention of introducing a 
particular type of orthogonal polygons - the grid n-
ogons - that presents sufficiently interesting 
characteristics that we are studying and formalizing. 
Of the problems related to grid n-ogons, the 
visibility problems are the ones that motivate us 
more, particularly the guarding and hiding 
problems. The paper is structured as follows: in the 
next subsection we will introduce some preliminary 
definitions and useful results. In section 3 we will 
present some problems and results related to THIN 
grid n-ogons, in particular a classification for these 
polygons. In section 4 we will expose some results 
related to the MVG problem on grid n-ogons and we 
will study the MHVS problem on THIN grid n-
ogons, a subclass of grid n-ogons. Finally, in section 
5 we will draw conclusions. 
 
2 Conventions, Definitions and Results 
In this paper, the interior and the boundary of a 
simple polygon P will be denoted by INT(P) and 
BND(P), respectively. And, for convenience, we will 
assume that the vertices of P are ordered in a 
counterclockwise (CCW) direction around INT(P). 
A vertex of P is called convex if the interior angle 
between its two incident edges is at most π, 
otherwise it is called reflex. We use r to represent 
the number of reflex vertices of P. It has been 
shown by O'Rourke that 2 4n r= + , for every 
orthogonal simple polygon of n vertices (n-ogon, for 
short). A rectilinear cut of a n-ogon P is a partition 
of P obtained by extending each edge incident to a 
reflex vertex of P towards INT(P) until it hits 
BND(P). We denote this partition by Π(P) and the 
number of its pieces by |Π(P)|. Each piece is a 
rectangle and so we call it a r-piece. A n-ogon that 
may be placed in a )2/()2/( nn ×  square grid and that 
does not have collinear edges is called grid n-ogon. 
We assume that the grid is defined by the horizontal 
lines y = 1, …, y/2 and the vertical lines x = 1, …, 
x/2  and that its northwest corner is (1, 1). Each grid 
n-ogon has exactly one edge in every line of the 
grid. Grid n-ogons that are symmetrically equivalent 
are grouped [1]. A grid n-ogon Q is called FAT iff 
|Π(Q)| ≥ |Π(P)|, for all grid n-ogons P. Similarly, a 
grid n-ogon Q is called THIN iff |Π(Q)| ≤ |Π(P)|, for 

all grid n-ogons P. Let P be a grid n-ogon and r the 
number of its reflex vertices. In [1] it has been 

proven that, if P is FAT then 
23 6 4( )

4
r rP + +

Π = , 

for r even and 
23( 1)( )

4
rP +

Π = , for r odd; if P is 

THIN then | ( ) | 2 1P r∏ = + . There is a single FAT grid 
n-ogon (see Fig. 1(a)); however, THIN grid n-ogons 
are not unique (see Fig. 1(b)). 
 

 
       (a)                                                 (b) 

 
Fig. 1: (a) The unique FAT grid n-ogons, for r = 2, 3 
and 4; (b) Two THIN 10-ogons 
 

The area of a grid n-ogon is the number of grid 
cells in its interior. In [1] it has been proven that for 
all grid n-ogon P, with 8n ≥ , 22 1 ( ) 3r A P r+ ≤ ≤ + . 
A grid n-ogon P is a MAX-AREA grid n-ogon iff 

2( ) 3A P r= +  and it is a MIN-AREA grid n-ogon iff 
( ) 2 1A P r= + . There are MAX-AREA grid n-ogons 

for all n, but they are not unique. However, there is 
a single MIN-AREA grid n-ogon and its form is 
illustrated in Fig. 2(a). Regarding MIN-AREA grid n-
ogons, it is obvious that they are THIN grid n-ogons, 
because ( ) 2 1P rΠ = +   holds only for THIN grid n-
ogons. However, this condition is not sufficient for a 
THIN grid n-ogon to be a MIN-AREA grid n-ogon. A 
grid n-ogon is called a SPIRAL grid n-ogon if its 
boundary can be divided into a reflex chain and a 
convex chain. A polygonal chain is called reflex if 
its vertices are all reflex (all except the vertices at 
the end of the chain) with respect to the interior of 
the polygon. And, a polygonal chain is called 
convex if its vertices are all convex with respect to 
the interior of the polygon. In [6] it has been proven 
that there are SPIRAL grid n-ogons, for all 6n ≥ ; 
however, they are not unique, as we may see this in 
Fig. 2(b). And it was also proven that every SPIRAL 
grid n-ogon, with 1r ≥  reflex vertices, is a THIN 
grid n-ogon. 
Given a n-ogon P, we can associate to Π(P) a graph, 
denominated the dual graph of Π(P) and denoted by 
G(P), which captures the adjacency relation 
between pieces of the partition. Each node of the 
dual graph corresponds to a piece of the partition 
and its non-oriented edges connect adjacent pieces, 
i.e., pieces with a common edge. We prove that if P 
is a THIN grid n-ogon then G(P) is a path graph, i.e., 
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a tree with two nodes of vertex of degree 1, called 
leaves, and the remaining nodes of vertex of degree 
2. To prove this result we introduce Lemma 2.1. 

 

 
    (a)                                                   (b) 

 
Fig. 2: (a) The unique MIN-AREA grid n-ogon, for   
r = 1, 2 and 3; (b) Two different SPIRAL grid 12-
ogons (reflex chain is bold). 
 
Lemma 2.1. Let P be a THIN (n+2)-ogon. Then 
every grid n-ogon that yields P by INFLATE-PASTE 
(a correct and complete method to generate grid n-
ogons, well described in [8]) is also THIN. 
 
Proposition 2.2. Let P be a THIN grid n-ogon with r 
(r ≥ 1) reflex vertices. Then G(P) is a path graph 
(see examples in Fig. 3). 
 
The proof of this proposition is done by induction 
on r and uses lemma 2.1. 
 

 
 
Fig. 3: Three THIN grid 10-ogons and respective 
dual graphs. 
 
Proposition 2.3. Let P be a grid n-ogon, with n > 6. 
If P is not THIN then G(P) is not a tree (see example 
in Fig. 4). 
 

 
 
Fig. 4: A grid 10-ogon and respective dual graph. 
 
Proposition 2.2. establishes that, being P a THIN 
grid n-ogon, G(P) is a path graph. So, each r-piece 
of Π(P) is adjacent to at most two r-pieces. In this 
way, each r-piece has at most 2 interior edges. 
Consequently, we conclude that in Π(P) there are 3 
types of r-pieces: Type 1: with one interior edge and 
three boundary edges; Type 2: with two interior 
edges not adjacent and two boundary edges not 
adjacent; Type 3: with two adjacent interior edges 
and two adjacent boundary edges. The r-pieces of 
the Type 1 correspond to leaves of G(P) and those of 
the Type 2 and Type 3 correspond to nodes of degree 

2. We showed that of the 4 vertices of the r-pieces 
of Type 1 three are vertices of P, being two reflex 
and the other convex, and the other vertex is an 
interior point of an edge of P. Of the 4 vertices of 
the r-pieces of Type 2 two are convex vertices of P 
and the other two are interior points of edges of P.  
And finally, of the 4 vertices of the r-pieces of Type 
2 two are vertices of P, being one reflex and the 
other convex, and the other two are interior points of 
edges of P (see Fig. 5).  
 

   
          Type 1                         Type 2                              Type 3 
 
Fig. 5: Types of r-pieces of a THIN grid n-ogon. 
 
Now, we are going to define the skeleton of a 
THIN grid n-ogon. Let P be a THIN grid n-ogon. 
Since G(P) is a path graph, we can say that P 
has two “extremes”: the r-pieces associated 
with the leaves of the dual graph. We will 
denote by kernel the extreme that has the 
horizontal edge with highest y-coordinate. From 
this graph we can obtain an orthogonal 
polygonal curve (i.e., a polygonal curve with 
horizontal or vertical edges) in the following 
way: we take the centroid of each r-piece, then 
we connect each one with the centroids of the 
adjacent r-pieces and, finally, we remove the 
central vertex of each three aligned vertices, as 
we can see in Fig. 6. We choose, for the first 
vertex of this orthogonal curve the kernel's 
centroid. Therefore it is easy to prove the next 
result. 

 
 
Fig. 6: THIN with r = 4; on the left is represented its 
dual graph and on the right its skeleton. 
 
Lemma 2.4. The skeleton of a THIN grid n-ogon is 
an orthogonal polygonal curve with r+2 vertices. 
 
3  Problems Related to THIN n-ogons 
As we have seen in Section 2, on the contrary of the 
FATs, the THIN n-ogons are not unique. In fact, there 
are 2 THIN 8-ogon, 30 THIN 10-ogons, 149 THIN 12-
ogons, etc. Thus, it is interesting to evidence that the 
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number of THIN grid n-ogons (|THIN(n)|) grows 
exponentially. Does there exist some expression that 
relates n to |THIN(n)|? As a step for the resolution of 
this problem we will first group the THINs into 
classes. In Section 2 we defined the skeleton of a 
THIN grid n-ogon. Now, using this concept, we will 
group THIN grid n-ogons into classes. From the 
skeleton of the THIN grid n-ogon, we can always 
represent it by a chain of 0's and 1's, with length r. 
For that we proceed in the following way: we 
transverse its skeleton, starting at vertex u1, and then 
we represent each turn left by 1 and each turn right 
by 0. Now, we will define two operations on these 
chains: the complementary operation and the 
inversion operation. 
 
Definition 3.1. Let c be a chain of 0's and 1's, with 
length r, i.e., c = b1b2…br, where bi = 0 or bi = 1, for 
i = 1, 2, …, r. The complementary operation is an 
operation which takes c as the argument and returns 
its complementary c* = b1*b2*…br*, where bi*= 1 if 
bi = 0 and bi* = 0 if bi = 1, i = 1, 2,…, r. The 
inversion operation is an operation which takes c as  
the argument and returns its inverse c-1=brbr-1…b1.  
 
For example, the complementary of the chain c = 
100011 is the chain c* = 011100 and its inverse is c-

1 = 110001. Easily we can verify that, (c*)-1 = (c-1)*, 
(c*)* = c and (c-1)-1 = c. 
 
Proposition 3.2. Let Cr be the set of all chains, of 
0's and 1's, with length r. The relation ~ defined on   
Cr by c1 ~ c2 ⇔ c2 = c1 ∨ c2 = c1

-1 ∨ c2 = c1
* ∨ c2 = 

(c1
*)-1, is an equivalence relation. 

 
Consider, now, the quotient set of Cr by ~, Cr /~ = 
{[c1]~ :  c1 ∈ Cr }. Note that, each equivalence class 
has more than one representative. We assume that 
the representative of each equivalence class always 
starts by 1. 
 
Proposition 3.3. Let Pr be the set of all THIN grid n-
ogons, with r reflex vertices. The relation ≡ defined 
on Pr by P1 ≡ P2  ⇔ c1 ~ c2, where c1 and c2 are the 
chains that represent P1 and P2, respectively, is an 
equivalence relation. 
 
The proof of this proposition is trivial. Let Pr/≡ = 
{[P1] ≡ : P1 ∈ Cr}. Let P1, P2 ∈ Pr and c1, c2 ∈ Cr the 
chains that represent them, respectively. Note that, 
P1 and P2 belong to the same class (i.e., P1 and P2 
are equivalents) if one of the following conditions is 
true: (i) c1 = c2; (ii) c2 = c1

-1; (iii) c2 = c1* or (iv) c2 = 
(c1*)-1. Observe that, geometrically, (ii) can 

correspond to a horizontal reflection and (iii) to a 
vertical reflection. In Fig. 7 six THINs with 4 reflex 
vertices that belong to the same class are illustrated. 
 

 
 
Fig. 7: THINs with 4 reflex vertices and respective 
chains. 
 
We can place the following question: Let c be chain 
of 0's and 1's with length r, started by 1. Is it always 
possible to construct a THIN, with r reflex vertices, 
whose chain that represents it is c? To answer this 
question we present the next algorithm: 
 
Algorithm 3.4. Let c be a chain of 0's and 1's, of length 
r, started by 1. 

1. From the chain draw a skeleton ignoring 
collinearities. 

2.    Make an horizontal sweep, from left to right, to 
eliminate vertical collinearities. This elimination is 
made modifying the edge corresponding to the 
beginning of the polygon. If two edges correspond 
to the beginning of the polygon, or no edge 
corresponds to the beginning of the polygon, it is 
indifferent to choose which one is modified.  

3.    Repeat the previous step until there are no more 
collinear vertical edges.  

4.    Make a vertical sweep, from bottom to top, to 
eliminate horizontal collinearities. This elimination 
is made modifying the edge corresponding to the 
beginning of the polygon. If two edges correspond 
to the beginning of the polygon, or no edge 
corresponds to the beginning of the polygon, it is 
indifferent to choose which one is modified.   

5.    Repeat the previous step until there are no more 
collinear horizontal edges. 

 
Now, we are going to count the number of classes of 
THIN grid n-ogons with r reflex vertices. To solve 
this problem we, first, prove the following 
proposition: 
 
Proposition 3.5. The correspondence   f: Pr/≡ → Cr/~ 
defined by f([P1]) = [c1], where c1 ∈ Cr is the chain 
that represents P1 ∈ Pr, which is a representative of 
the class [P1], is a bijective function. 
 
Proposition 3.6. The number of classes of THIN grid 
n-ogons with r reflex vertices (r ≥ 2) is equal to 

1( 3)2 22 2
rr −− + , if r is odd and 

1 ( 2)2 22 2
rr −− + , if r is 

even. 
 

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007     154



Proof. By proposition 3.5 we can conclude that |Pr/≡| 
= |Cr/~|, so we just have to calculate |Cr/~|. The 
cardinal of Cr is 2r and the number of symmetrical 
chains (c = c-1), with length r, is / 22 r⎡ ⎤⎢ ⎥ . If a chain c 
is symmetrical, then its equivalence class is 
constituted by two chains, c and c*. If a chain c is 
not symmetrical, to find the cardinal of its class, we 
have to distinguish two cases: r odd and r even. If r 
is odd, all the chains have 4 equivalent chains: c, c-1, 
c* and (c*)-1 (for example: c = 11010, 01011, 00101 
and 10100). If r is even, there are chains that have 4 
equivalent chains (e.g., c = 1110) and chains that 
only have 2 equivalent chains; this case happens 
when c* = c-1 (e.g., for the chain c = 1100, c* = c-1 = 
0011. Let us now count the number of equivalence 
classes. If r is odd, the number of equivalence 
classes of the symmetrical chains (SC) is 

1 1
2 21 1| | 2 2

2 2

r r

SC
+ −⎛ ⎞

= =⎜ ⎟
⎝ ⎠

 and the number of equivalence 

classes of the non symmetrical chains (NSC) is  
1 3

22 21 1| | 2 2 2 2
4 4

r r
r rNSC

+ −
−⎛ ⎞

= − = −⎜ ⎟
⎝ ⎠

. Thus, if r is odd, 

the total number of equivalence classes is 
1 3

2 2 22 2 2
r r

r
− −

− + −  = ( )1 32 22 2
rr −− + . If r is even, the 

number of equivalence classes of symmetrical 
chains is ( )1 2

2 21 1| | 2 2
2 2

r r
SC

−⎛ ⎞
= =⎜ ⎟

⎝ ⎠
. The number of 

equivalence classes of non symmetrical chains 
constituted by two chains (for example, the classes 
of the chains 101010, 1100, 110100, …) is 

( )1 2
2 21 2 2

2

r r−⎛ ⎞
=⎜ ⎟

⎝ ⎠
. In fact, to obtain c* = c-1, the second 

half of the chain is completely determined by the 
first half. Therefore, the cardinal of these classes is 
half of the number of chains of this type. And, the 
number of equivalence classes of non symmetrical 
chains constituted by four chains is  

* 11 | ( ) |
4

All Symmetric Chains with c c−− − = =  2 21 2 2 2
4

r r
r⎛ ⎞
− − =⎜ ⎟

⎝ ⎠
  

( )1 22 22 2
rr −− − . Thus, if r is even, in the total, the 

number of equivalence classes is ( )1 22 22 2
rr −− + . � 

However, there are still some open problems to 
solve, such as: How many elements THIN grid n-
ogons does each class have? Will it be possible to 
find an algorithm that generates all THIN grid n-
ogons of the same class? Note that, solving the first 
problem we also solve the initial problem, that is: 
does there exist some expression that relates n to 
|THIN(n)|? 
 
4  Visibility Problems on grid n-ogons 

Of the problems related to grid n-ogons, the 
guarding and hiding problems are the ones that 
motivate us more, particularly the MVG and MHVS 
problems. Since THIN and FAT n-ogons are the 
classes for which the number of r-pieces is 
minimum and maximum, we think that they can be 
representative of extremal behavior. Besides that 
they are used experimentally to evaluate 
approximate methods of resolution of the MVG 
problem, so we started with them. We have already 
proven that to guard any FAT grid n-ogon it is 
always sufficient two π/2 vertex guards (vertex 
guards with π/2 range visibility) and established 
where they must be placed [4]. However, THIN grid 
n-ogons are much more difficult to guard, in spite of 
having much fewer r-pieces than FATs. Besides, 
they are not unique, so we tried to characterize 
structural properties of classes of THINs that allow 
for simplifying the problem's study. Up to now the 
only quite characterized subclasses are the MIN-
AREA and the SPIRAL grid n-ogons. We proved that 
to guard any MIN-AREA and SPIRAL grid n-ogon 
⎡n/6⎤ and ⎣n/4⎦ vertex guards are necessary, 
respectively. Moreover, we showed where those 
guards could be placed [5, 6].  
 
4.1 Maximum Hidden Vertex Set Problem 
on THIn grid n-ogons 
Given a simple polygon, P, and a subset of vertices 
of P, HV, we say that HV is a hidden vertex set if no 
two vertices in HV see each other. The MAXIMUM 
HIDDEN VERTEX SET problem on a simple polygon 
asks for an hidden vertex set, HV, of maximum 
cardinality.  We will call the elements of HV hidden 
vertices. Shermer [7] proved that the size of the 
MAXIMUM HIDDEN VERTEX SET of a n-ogon is at 
most (n-2)/2. This tight bound is achieved in 
staircase polygons. We will show that, given a THIN 
grid n-ogon the maximum cardinality of a hidden 
vertex set is ⎡n/4⎤. 
Let P be a THIN grid n-ogon and S = u1u2… un/2 its 
skeleton. Let us assume, without loss of generality, 
that the first edge of S, [u1u2], is horizontal and that 
u2 is to the right of u1. Note that, the boundary of P 
consists of two joined polygonal chains, c1 and c2, 
“parallel” to S, where the first edge of c1 is a bottom 
edge and the first edge of c2 is a top edge. Note that, 
c1 and c2 can be expressed as ordered sequences of 
vertices 1 1 1

1 1 2 / 2... nc v v v=  and 2 2 2
2 1 2 / 2... nc v v v= , where 

1
iv  denotes the ith vertex of c1 and 2

iv  denotes the ith 
vertex of c2 (see Fig. 8).  
This way, BND(P) = 1 2 2 1

1 / 2 / 2 2 1 1n nc v v c v v⎡ ⎤ ⎡ ⎤∪ ∪ ∪⎣ ⎦ ⎣ ⎦ . 

Observe, also, that, if we transverse S, starting at 
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vertex u1, c1 is always on the right of S and c2 on the 
left. 

 
 
Fig. 8: Two THINs grid n-ogons, its skeletons and 
the chains c1 and c2 (c1 in bold). 
 
To each vertex of the skeleton we correspond two 
vertices of the polygon, one in c1 and another one in 
c2. That is, to ui ∈ S, we correspond the vertices 1

iv  

∈ c1 and 2
iv  ∈ c2. And to each edge of the skeleton 

we correspond two parallel edges of the polygon, 
one in c1 and another one in c2. That is, to 

1i iu u +⎡ ⎤⎣ ⎦ ∈ S, we correspond the edges 1 1
1i iv v +⎡ ⎤⎣ ⎦ ∈ c1 

and 2 2
1i iv v +⎡ ⎤⎣ ⎦ ∈ c2. Note that, by construction of the 

skeleton, we can easily see that any point of 
1 1

1i iv v +⎡ ⎤⎣ ⎦  sees any point of 2 2
1i iv v +⎡ ⎤⎣ ⎦ . 

Now, for each u2k-1 ∈ S with k = 1, …, ⎡n/4⎤, we 
mark an hidden vertex in P, in the following way: 
for k = 1 we mark 1

1v ; for k ≠ 1 we mark 1
2 1kv −  or 

2
2 1kv − , depending if 1

2 2kv −  is reflex or convex, 
respectively (see Fig. 9, for illustration). 
 

 
 
Fig. 9: Two THINs grid n-ogons and marked hidden 
vertices (c1 in bold). 
 
Therefore it is easy to prove the next result. 
 
Lemma 4.1. For any THIN grid n-ogon there is an 
hidden vertex HV and |HV| = ⎡n/4⎤. 
 
And then using this Lemma we prove our main 
result. 
 
Theorem 4.2. Let P be a THIN grid n-ogon. The 
maximum cardinality of an hidden vertex set in P is 
⎡n/4⎤. 
 
5 Conclusion 
We presented some results related to grid n-ogons. 
Of the hiding problems related to the grid n-ogons, 

it is the MHVS problem that motivates us more. We 
proved that the maximum cardinality of an hidden 
vertex set in a THIN n-ogon is ⎡n/4⎤. Moreover, we 
established a possible positioning for those hidden 
vertices. We also established a possible 
classification for THIN n-ogon, as a step to launch an 
expression that relates n to |THIN(n)|.  
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