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Abstract: - In this paper we present a model free hybrid visual servoing system. The “model free” term refers to the 
system with the unknown kinematics model that has to be estimated on-line, while “hybrid” specifies the visual 
controller architecture. The proposed system has a conventional Jacobian estimation part necessary for control output 
generation and it is supplemented with an additional adaptive neural network (ANN). It is shown that ANN could be 
used to improve the visual servoing performances of the conventional visual servoing controller, as well as to enable 
the mimetic control of the robot which dynamics differs from the robot which it mimics. 
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1   Introduction 
 
Numerous advances in robotics have been inspired by 
the biological systems. Necessity for improvements has 
been recognized due to lack of sensory capabilities in 
robotic systems which make them unable to cope with 
the challenges such as unknown and changing 
workspace, undefined location, calibration errors and so 
on. Well known facts which claim, that vision is the 
most powerful sense in humans and that using vision 
humans manipulate its environment, result with response 
to this challenge after which the visual servoing was 
born. It emerges naturally from our own human 
experience and from observing other living beings which 
are able to execute complicated tasks thanks to their 
sometimes primitive visual systems [1]. Visual servoing 
(VS) is now a mature subject which currently hosts 
many different research lines such as image processing, 
computer vision algorithms, real time control, robot 
modeling, linear and non-linear control theory, etc. VS 
aims to control a robot through artificial vision in a way 
as to manipulate the environment, just as humans do. 
Using the context of technical system vocabulary, VS 
has been defined as using visual data within the control 
loop [1], enabling visual-motor (hand-eye) coordination.  
On the other side researches from many scientific 
disciplines are designing artificial neural networks to 
solve the variety problems in pattern recognition, 
 prediction, optimization, associative memory, and 
control [2]. As the visual servoing problem tackles 
almost all of mentioned areas, it seems natural to use the 
artificial NN for the problem solving. There are 
numerous examples from research theory and practice 
which applied the mentioned approach. The drawback of 
many neural schemes to tackle visual-motor control 

problem is that of a long training period [2]. In this 
article we suggest an approach using EMRAN-RBF 
which is able to learn this visual-motor coordination on-
line. Consequently, conventional (model-based or 
model-free) control of a single robot manipulator has 
been improved and/or, as it is showen in our simulations 
it can be used for mimetic visual servoing in which 
EMRAN-RBF appropriately translate conventional 
visually servoed robot movements causing the similar 
behavior of another robot. For the clarity reasons, the 
next section of the paper briefly described all the 
important terms used in this paper, specify the state of 
the art and what our contribution comparing to the 
previous approaches. In Section 3 the control algorithms 
have been presented, while Section 4 give an overview 
of the simulated system characteristics. Section 5 
presents the simulation results, and finaly, Section 6 
concludes the paper. 
 
      

2   State-of-the-art 
The main goal of the visual servoing is to move the robot 
tip (or mobile robot) to a certain pose with respect to 
particular objects or features in images. Based on the 
error signal domain, two types of visual servoing system 
could be defined: image based visual servoing (IBVS) 
and position based visual servoing [3]. The first one 
assumes that the error is defined in 3D (task space) 
coordinates, while IBVS is based on the error which is 
defined in terms of image features. The specification of 
an image-based visual servo task involves determining 
an appropriate error function f, that yields f=0 when the 
task is achieved, f=0 [4]. Visual servoing problem could 
be formulated as a nonlinear least squares problem in 
which the goal function F is define as: 
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where, ),( tf θ  is an appropriate error function, which 
could be expressed as: 
 
∆f= J (q)* ∆q     (2) 
 
In (2) J is the Jacobian matrix, which relates the rate of 
change in the image space with the rate of change in the 
task space. Conventional approaches assume that the 
Jacobian could be identified analytically based on the 
camera calibration parameters, depth estimation, and the 
number of features parameters related to number of 
degrees of freedom the robot has to be controlled [3]. 
Also, it can be taken into account that visual servoing 
algorithms have been independent of the hardware types 
of configuration (robot and camera). Such approach is 
model free visual servoing [5,6] which we have also 
partially used in this paper. We formulate the visual 
servoing problem as a nonlinear least squares problem 
solved by a quasi-Newton method using Broyden 
Jacobian estimation. Such system is supplemented with 
adaptive neural network (ANN) EMRAN-RBF [7] to 
enable mimicking of the robot movements, as we show 
in this paper. It is also possible to use the same ANN to 
improve the accuracy in the task solving (i.e. 
approaching, tracking). The approach used in this paper 
slightly differs from the other approaches with neural 
networks [8,9]. Typical example has been presented in 
[9] where the hybrid neural control scheme has been 
proposed for the problem solving. The problem has been 
viewed as a calibration problem for which the authors 
propose three ways in which the problems could be 
solved: model-based, model-free and hybrid approach. 
The first one is related with combined model of the 
manipulator and camera that can be used to compute the 
joint space coordinates given the camera coordinate. The 
second, model-free approach, assume that a learning 
paradigm is adapted using on-line data to learn the 
required mapping. The last one, hybrid approach, treats 
the model generated in the first approach as an 
approximate model. The authors [9] are using this use 
the model to construct the learning paradigm and save 
considerable time. Then, the learning paradigm is fine-
tuned by choosing selected workspace regions where the 
error is expected to be pronounced, thereby improving 
the accuracy of the model-based approach to that of the 
model-free approach.  
Therefore, in this paper model-free approach assume that 
the system Jacobian has been defined using numerical 
estimation technique and after that, the real robot joint 
values of the first robot have been used as an input to the 

ANN controller which, using also a visual signal from 
the camera adopt the input values to the appropriate 
changes in the system. The paper also shows that the 
same NN could be used to improve the visual servoing 
tasks of the conventional controller and explains under 
which circumstances it can be useful. 

 
 

3   The control scheme 
In this paper we are interested in mimetic robot visual 
control in a fixed camera configuration. Fig.1. shows the 
structure of the visual servo systems used in this paper. 
Here, so called image-based visual servoing is 
considered, in which the error signal that is measured 
directly in the image, is mapped to the robot actuators' 
command input. Visual controller has two separated 
parts. The first one is the conventional visual servo 
controller and the second one is adaptive NN. In the 
remainder of this section we briefly present the main 
characteristics of those two most important parts of the 
system. 
 
 
3.1. Conventional visual controller 
In our earlier paper [10], as well as in [11,12], the 
control law for conventional visual controller has been 
developed minutely. Here, for the clarity reasons, we 
reply that the visual controller is constructed in order to 

determine the joint velocities 
•

q   as: 

KeJq
+

•

=      (3) 

where +J , K, and e are the pseudo inverse of the 
Jacobian matrix J that relates joint coordinates with 
image features, control gain, and the error signal that is 
obtained by comparing the desired and current image 
feature parameters, respectively. 
The relation between joint coordinates and image 
features is given by (2). The same relation could be 
rewritten using derivatives (4) 

••

= 11 qJf       (4) 
where J is a compound of a robot and image Jacobian. If 
the expression (3) is multiplied by J then we get 

11 KeJJqJ +
•

=       (5) 

that after rearrangement finally yields decoupled closed 
loop dynamics of first order (6). 

d
KfKff 111 =+

•

     (6) 
 
 However, the compound Jacobian J depends on the 
system calibration parameters that are hard to obtain 
accurately in practical applications. In the proposed 
visual servoing scheme, the Jacobian J is obtained by the 
estimation process.             
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Fig.1. Mimetic visual servoing block diagram. 
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Fig.2. Single robot visual servoing block diagram 
 
Various estimation scheme have been exhaustively 
studied [11,12] and have shown various degrees of 
successfulness in performing various tasks. One of the 
standard schemes is algorithm based on the Broyden 
estimation technique which can be used for on-line 
estimation of the Jacobian matrix. Consequently, the 

update equation of its estimate 
∧

J  is given by (7), 

( ) 1
11111 )( −

∧

∆∆∆∆−∆+= qqqqJfJJ
TTη           (7) 

where the adaptation constant η  is introduced in order to 
maintain the convergence overcoming the noise 
problems of the Broyden method [13, 14]. In this paper, 
we propose to use the additional ANN controller to adapt 
the visual control task achievement in a way that the 
robot follows the robot tip of another one or to improve 
the visual task achievements of a conventional visual 
controller. 
 
 
3.2. ANN for visual mimicking 
The ANN we use has been based on the network from 
library [7]. Differently from existing neural network 
collections and toolboxes, in this library, a neural 
network is strictly treated as a dynamic system with its 
inputs, outputs and states, and the «dynamic» of the 
approximation process is therefore considered as an 

essential part of this «system». In addition, emphasis is 
given to the approximation result rather than to the 
approximation process. Therefore, it seems reasonably to 
use the network together with a conventional estimator 
which approximates the process and after that ANN 
directs the results to fit into the approximated process. 
The Neural Network is represented as Simuling block 
with its inputs and outputs. Inputs to the block are: 
- The input vector to the NN 
- The error between the real output and the network 

approximation 
- A logic signal that enables/disables the learning. 
Outputs from the block are: 
- The value of the approximated function for the 

current point in the input space 
- All the «states» of the network, namely the weights 

and all parameters that change during the learning 
process. 

By means of the supplied interface, the user can easily 
set the network parameters that usually remain constant 
within a specific simulation such as, for example, the 
number of inputs to the network, the learning rate or the 
sample time. 
For visual mimicking purpose we have used EMRAN-
RBF neural network. The details are given in [1]. For the 
clarity reasons, we present here the most important parts. 
The EMRAN-RBF is a variation of the standard MRAN 
(Minimal Resource Allocating Network) [15]. The RAN 
itself emerge in order to avoid the dimensionality 
problems generated by the standard RBFNs, proposed a 
sequential learning technique for RBSNs. The RAN 
network has proven to be suitable for online modelling 
of non-stationary processes. The RAN learning 
algorithm proceeds as follows [7]: 
At each sampling instant, if all of the following 3 criteria 
are met one unit is added: 

• Current estimation error criteria, error must be 
bigger than a threshold: 

 1)(ˆ)()( Ekykyke ≥−=         (8) 

• Novelty criteria, the nearest center distance must 
be bigger than a threshold: 

2
1

)()(inf Ekkx j

M

j
≥−

=
µ              (9) 

• Windowed mean error criteria, windowed mean 
error must be bigger than a threshold: 

 [ ]∑
=

≥+−−+−
T

i
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         (10) 

This new neuron is initialized with the following center, 
variance and weight respectively: 
 

• )()(1 kxkM =+µ         (11) 

• )()(inf
1

1 kkx j

M

j
M µλσ −=

=+        (12) 
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where λ  is a constant called «overlapping factor». 
If one (or more) of the criteria is not satisfied, the vector 

)(kθ  containing the tuning parameters of the RBF-NN 
is updated using the following relationship: 
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where e(k) is the prediction error and η is the learning 

rate and )(kθ  is the vector of parameters to be updated. 
Based on the described characteristics, in EMRAN-
RBFNs, the growing and pruning mechanism remains 
unchanged , while the parameters are updated following 
a «winner takes all» strategy. In practice, only the 
parameters of the most activated neuron are updated, 
while all other are unchanged. This strategy, (named 
Extended MRAN, or EMRAN) implies a significant 
reduction of the number of parameters to be updated 
online, and for this reason it is particularly suitable for 
online applications [7]. More details on EMRAN-RBF 
could be found in [7]. We have found it well suited for 
the visual mimicking purpose when using together with 
conventional visual servoing controller. Consequently, 
visual task could be performed remotely using a camera 
which «see» the robot and a projection of the «robot 
master» which also visually performs the task, or as 
simulation shows, the EMRAN-RBF could be used to 
improve the visual task goals achievements. 
 
 

4. Simulations 
4.1. The system 
The simulated system is presented in Fig.1. and Fig.2. 
During simulations the task has been performed using 
2DOF planar manipulator with two revolute joints and a 
camera that can provide position information of the 
robot tip and the target in the robot workplace. The robot 
direct kinematics is given by the following equations, 
 









++

++
=

)sin()sin(

)cos()cos(

211

211

qqq

qqq
Lx                 (15) 

 
where 21 ,qq  are the robot joint angles and x is a vector 
of robot tip coordinates in the Cartesian world 
coordinate frame (Fig.3). mLll 4.021 ===  is the 
length of the robot single link. Translation and rotation 
of the camera frame with respect to the robot world base 
frame is given by the RPY homogenous transformation 
matrix Rc (16). It is rotated around y-axis for 135°, and 

translated for 1.2 m in both, y and z direction 
respectively.  
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A block named “robot servo” in Fig. 2. represents the 
robot system dynamics which includes motor, current 
and velocity-loop dynamics for joints. It has been 
modeled with the first order open loop transfer function 
as: 
 
G(s)=100/(s+100),           (17) 
 
which means that the velocity-loop is very fast with 
respect to the sampling interval (Tcamera). We use the 
robots with the same dynamics, although the algorithm 
performs well for robots with different dynamics. The 
input velocity error has been saturated according to robot 
specification with limit=0.5. Visual feedback gain has 
been set to K=5. The “robot servo” itself represents an 
open loop system, due the direct feedback from joints 
has been used as input in visual servo controller 
(Fig.1.and 2.) for Jacobian update  Ĵ  calculation. 
 
 
4.2. Simulation results 
In this paper, the image processing node generates the 
target point applied in the visual task definition within 
the image. When the first robot tip reached the target, the 
target point was moved to another position in order to  

 

 
 
Figure 3. Planar 2DOF parallel manipulator 
 
provide traveling of the robot tip through the whole 
robot work plane. The position of the target point 
determined corners of a characteristic trajectory in the 

3rd WSEAS International Conference on REMOTE SENSING, Venice, Italy, November 21-23, 2007     90



image plane. The projection of the target positions on the 
robot workplane is depicted by Fig.4. The initial robot 
tip position is marked with “0” and the corresponding 
robot joint angles have the following values: 

oo 120,30 21 == qq . The  
initial target position is marked with “0”, and the 
referent positions are marked “1”, “2”, “3” and “4”. For 
the first robot task, the target point positions were 
generated in the following order: “0”-“1”-“2”-“3”-“4”-
“1”-“0”.The control algorithm has been implemented in 
SIMULINK model using the appropriate S function. For 
reference trajectory, marked with points “0”-“1”-“2”-
“3”-“4”  (Fig. 4.), the rectangle has been chosen with the 
upper left corner (121,336) and the down right corner 
(371,156), expressed in the image coordinates. A target 
start position has been the same as the robot tip start 
position and it has been moved during simulations with 
constant speed (measured in pixel/s). The trajectory 
rectangle has Xmax=200 pixel and Ymax= 180pixel width 
and height, respectively. The trajectory rectangle has the 
start point Tstart=(x_end0, y_end0)=(246, 236) and  
T_camera=0.033 s has been used in simulations as 
camera refresh rate (measured in s). Along the curves 
“1”-“2” and “4”-“3” the y component of the speed has 
been set to zero. The robot tip starts from the point 
where target is positioned and marked in Figure 4. as 
“0”. It is worth to notice that all simulations have been 
performed under the geometrical noise, which is 
generated through truncation of image pixels value of 
the robot tip position, which is a normal procedure in 
IBVS.  
We have started our simulations using only one robot 
performing the described task using Broyden estimation 
method for conventional visual controller Jacobian 
estimation with constant 15.0=η . The first robot tip  

   
Fig. 4. Target movement 
 
traces presented in Fig.5.a. follows the desired curve. 
Small deviations appear while robot tip tracks the 
trajectory between points marked as «4»-«1». We have 

study more deeply the mentioned deviations in our 
previous work and suggest how they can be improved 
with other Jacobian estimation techniques [12]. In this 
paper we intentionally choose average performances 
conventional visual controller to emphasize the 
improvement effects caused by ANNs. Fig.5.b. shows 
the same trajectory traces when EMRAN-RBF neural 
network has been added to conventional visual controller 
according to scheme presented in Fig.2.  
 

a)
100 150 200 250 300 350 400

150

200

250

300

350

u (pixels)

v
 (
p
ix
e
ls
)

 

b)
100 150 200 250 300 350 400

150

200

250

300

350

u (pixels)

v
 (
p
ix
e
ls
)

 
 

Fig. 5. The task in which the first robot tip has been 
sequentially moved through the specified points. The 
image of the reference curve (solid line) and robot tip 
curve (dashed line) have been presented for: 
a) conventional visual controller only 
b) added EMRAN-RBF neural network 

 
Neural network corrects the deviations causing the robot 
tip trajectories almost perfectly follows the desired 
trajectory. The EMRAN-RBF neural network parameter 
has been setup through appropriate Simulink block 
interface. We have found out that the most important 
parameters are learning rates and sample time, which are 
[0,175 0,175 0,175] and 0,033, respectively.    
After the desired tracking characteristic of the first robot 
had been achieved, we have proceed with the 
simulations which include two robots connected with 
neural network according to scheme in Fig.1. Such 
scheme enables mimetic behavior of the second robot. In 
our simulations we have use one camera for visual 
servoing of the first robot and one camera for the second 
one. Consequently, the robots could be positioned not in 
the desired points, but in the points projected from 
appropriate camera optical center positions. For correct 
positioning, at least two cameras have to be used, but 
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under such conditions the real experiment has to be 
planned more carefully because the both robots would 
reach the same space positions.  
The results are presented in Fig. 6. The neural network 
parameters for mimetic trajectory are [0,27 0,27 0,27] 
for learning rates and 0,001 for sample time. Simulations 
show that the second robot perfectly follows the tip of 
the first one. It is worth to notice that the same results 
appear even the robots do not have the same dynamics. 
Such achievements give us the idea that the whole 
system could be used for muscle training under the 
therapy in which healthy part of the body trains its 
symmetrical parts forcing the achievement of the same 
visual goals. 
 
 

5. Conclusion 
The image based visual servoing paradigm represents the 
challenge in the visual controller design due to numerous 
unknowns present in the system. Such systems have  
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Fig. 6. First robot tip trajectory (solid line), which is a 
referent one for the mimetic movements of the second 
robot (dashed line). 
 
usefull in an unstructured envinronment and for well 
defined industrial tasks as well. Typicaly, such systems 
are designed as model and calibration free visual servo 
system in which various numerical methods could be 
used for Jacobian estimation. 
In this paper we have shown that average quality 
numerical solutions could be improved with EMRAN-
RBF neural network. Moreover, the same neural network 
is able to transfer the visual servoing goals to the other 
robot which has the same configuration, but different 
dynamics. Consequently, the other robot sucessfully 
mimic the first one in achieving the visual goals. Real 
application for such type of control cover the broad 
range of  human activities, such as telepresence, and 
rehabilitation therapy.  
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