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Abstract: The magnetically induced flow was examined numerically using a computational code based on the fi-
nite element method with the streamline-upwind/pressure-stabilized Petrov-Galerkin approach. The mathematical
model considers an incompressible unsteady flow with a low frequency and low induction magnetic field. The val-
idation of the magnetic force calculation was carried out on a cylindrical cavity, where the time-dependent electric
potential and current density distribution can be derived analytically. The flow under the rotating magnetic field
was simulated for the axisymmetric cylindrical and non-axisymmetric square cavity. The effect of the different
geometries on the distribution of the time-averaged magnetic force and magnetically driven rotating flow was dis-
cussed.
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1 Introduction
Various kind of magnetic fields such as rotating
(RMF) or traveling magnetic field (TMF) are suc-
cessfully applied in metallurgical and single crystal
growth processes. In order to use these techniques
effectively, an in-depth knowledge about effects of
the magnetic field on electrically conducting fluids
is needed to understand. The fact, that experimen-
tal approaches are mostly too expensive for such in-
vestigations so that a numerical simulation was found
to be an attractive way for extensive magnetically
driven flow studies. An overview of results achieved
mainly by numerical simulations can be found e.g. in
[1],[3],[5],[8] and [9].

To carry out a numerical simulation of magneti-
cally controlled flows, a computational code extended
about magnetohydrodynamic equations is required for
comprehensive flow simulations. In the frame of fol-
lowing sections, the numerical computational code
based on the finite element method as well as main
results achieved by these numerical simulations will
be presented.

2 Problem formulations
The container, bound by electrically insulated walls
with the radius R (cylindrical container) or half side
length A and the height H , is filled by an electrically
conducting fluid with the density ρ, kinematical vis-
cosity ν and electrical conductivity σ. The fluid inside

is stirred by the rotating magnetic field with a mag-
netic induction B and frequency ω. The incompress-
ible viscous flow is governed by the Navier-Stokes
equation and the continuity equation taking a form as

∂u

∂t
+∇ · uu = −∇p +∇2u + f (1)

∇ · u = 0 (2)

with Dirichlet and Neumann type boundary con-
ditions

u = g at Γg (3)
n · (p + ν∇u) = h at Γh (4)

where the velocity u and time t are scaled by
ν/A, A2/ν, the pressure p by ν2/A2and an external
mean body force f is scaled by ν2/A3.

For the calculation of the magnetic body force,
the low-frequency and the low-induction RMF con-
dition are assumed. To satisfy these conditions, the
magnetic Reynolds number Rm and the shielding pa-
rameter S have to be in relation that Rm = µσuR ¿
S = µσωR ≤ 1 , where µ denotes the magnetic per-
meability. Using Ohm’s law, the body force takes this
form

f = j ×B = [σ(−∇Φ− ∂A

∂t
+ u×B)]×B (5)
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where Φ and A denote the electric potential and
the vector potential, and j is the current density. To
determine the electric potential Φ in Eqn. 5, we can
exploit that ∇ · j = 0 and at boundaries j · n = 0.
Thus, the equation for electric potential derived on the
basis of Ohm’s law is in this form

∇2 · Φ = −∇ ·
[
∂A

∂t
− (u×B)

]
= 0 (6)

with the Neumann type boundary condition

∂Φ
∂n

= −∂An

∂t
(7)

For the infinite-length container, ∂Φ/∂n = 0,
otherwise ∂Φ/∂n = −∂An/∂t.

Practically, the time-dependent Lorentz force dis-
tribution is computed using Eqns. 5, 6 and 7. Nev-
ertheless, this body force can be divided further into
two parts; the time-dependent and the mean part, re-
spectively. Under considerations that the interaction
parameter is N = σB2/ρω ¿ 1 only the mean part
of the magnetic body force has a significant effect on
the magnetically induced fluid flow and the fluctuating
part can be neglected [2] and [4]. The time-averaged
part is defined as follows

favg =
π/ω∑

0

fdt =
1
M

M∑

i=1

f i (8)

where M denotes the number of regularly dis-
tributed samples used for the time averaging within
the half period of the magnetic field oscillation.

3 Numerical approaches

The finite element discretization space of Ω with
boundary Γ is consisted of Ωe, where e =
1, 2, · · · , nel and nel is the number of elements. For
velocity and pressure, we define the finite element trial
function space denoted as Sh

u and Sh
p , and weight-

ing function υh
u and υh

p . These function spaces
are selected for Hh

1 (Ω), where Hh
1 (Ω) is the finite-

dimension function space over Ω. Equation 1 and 2
can be formally integrated in time and is written as fol-
lows: find uh ∈ Sh

u and ph ∈ Sh
p such that ∀wh ∈ υh

u ,

∀qh ∈ υh
p

∫
Ω wh(

un+1 − un

δt
+∇ · uu− f +∇p) dΩ

+
∫

Ω
(∇wh)T : ∇u dΩ

−
∫

Γ
wh · ∂nu dΓ +

∫

Ω
qh · un+1 dΩ

+
nel∑

e=1

∫

Ωe

(τSUPG u · ∇wh) · (r) dΩ

+
nel∑

e=1

∫

Ωe

(τPSPG ∇qh) · (r) dΩ = 0 (9)

where the residual r is defined as

r = ∂tu +∇ · uu− f −∇2u +∇p. (10)

The overbar denotes the time averaged over the
time interval given by tn and tn+1. To the stan-
dard Galerkin formulation of Eqn. 1 and 2;
the SUPG (streamline-upwind/Petrov-Galerkin) and
PSPG (pressure-stabilizing/Petrov-Galerkin) terms
are added. An appropriate choice for τSUPG and
τPSPG is given by [7] and [6]. Both stabiliza-
tion terms represent weighted residuals, and therefore
maintain the consistency of the formulation.

The magnetic body force can be trivially calcu-
lated if the current density field is known. The right
side of the equation 5 is applied for the calculation of
the current density field and it is integrated as follows:
find jh ∈ Sh

j such that ∀wh ∈ υh
j , where Sh

j rep-
resents the finite element trial function space and υh

j
weighting function

∫
Ω wh[j + σ∇Φ + σ

∂A

∂t
− σ(u×B)]dΩ

+
∫
Γ wh∂njdΓ = 0. (11)

The boundary integral is zero because of j · n = 0.
The time derivation of the vector potential is known
for a particular type of the magnetic field. The electric
potential must be calculated based on Eqn. 6, and after
integration takes the form: find Φh ∈ Sh

Φ such that
∀qh ∈ υh

Φ, where Sh
φ represents the finite element trial

function space and υh
Φ weighting function

∫
Ω ∇qh · [∇Φ +

∂A

∂t
− (u×B)]dΩ +

∫

Γ
qh

∂n[−∇Φ− ∂A

∂t
+ (u×B)]dΓ = 0 (12)

In this equation, the boundary integral vanishes be-
cause of the Neumann type boundary for the electric
potential (see Eqn. 7).

6th WSEAS International Conference on SYSTEM SCIENCE and SIMULATION in ENGINEERING, Venice, Italy, November 21-23, 2007     371



Figure 1: Computational grid decomposed into 16
grid partitions

The integrated Eqn. 9 is further split into a ve-
locity (predictor) and a pressure (corrector) step. The
predictor step for velocity is solved explicitly using
the Jacobi iterative method, the corrector step involv-
ing the pressure equation is solved implicitly by the
Conjugated gradient method. The equation 11 and
12 are solved iteratively by the Jacobi method. For
the time averages, the second-order Adams-Bashforth
method is applied.

The calculation of the mathematical model is
fully parallelized. The created computational grid is
decomposed into a specific number of partitions using
the METIS package [11] (see Fig.1). For handling
of computational grids, the MG grid library [10] was
used which provides a data structure and basic proce-
dures.

4 Code validations
The code validation was divided into two significant
steps. The first part of the code validation is focused
on the mathematical model describing an effect of the
magnetic field on the electrically conducting fluids.
The second part was dealing with the flow solver it-
self. The flow solver was validated by various test
cases such as unsteady laminar flows in the channel,
the Stokes flow in the cylindrical infinite-length con-
tainers etc. These tests confirmed the second-order
accuracy in space and time. How the code can cap-
ture an onset of the flow stability was presented in
[3]. Briefly, the results obtained were in good agree-
ment with the results based on high-order computa-
tional methods [1].
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Figure 2: Contours of the electric potential calculated
by the analytical form (left) and using the mathemati-
cal model (right)
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Figure 3: Contours of the y-component of the cur-
rent density field calculated analytically (left) and us-
ing the mathematical model (right) depicted in the yz-
slice.

The mathematical model for the magnetic force
calculation was examined on the cylindrical finite-
length container exposed by a rotating magnetic field.
Considering a conducting fluid insight, the current
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density and electrical potential can be derived analyti-
cally. Figure 2 shows a good agreement of the electric
potential distribution calculated, based on the analyti-
cal expression and by Equation 12.
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Figure 4: Contours of the z-component of the cur-
rent density field calculated analytically (left) and us-
ing the mathematical model (right) depicted in the yz-
slice.

Figure 3 and 4 show a good agreement of the cal-
culated y- and z-components of the time-depending
current density field compared with the analytical so-
lution both in the same time position.

5 Results
In order to demonstrate the practical applicability of
the computational code for magnetically driven flows,
two characteristic examples are chosen: the flow
driven by the rotating magnetic field in an axisymmet-
ric and non-axisymetric cavity respectively. In both
cases, the Taylor number Ta = 1×104 is considered,
where the Taylor number is defined as follows:

Ta =
σωB2

0L4

2ρν2
(13)

where B0 is an amplitude of the magnetic field in-
duction and L is the characteristic length. The char-
acteristic length is either the radius of the container
(cylindrical cavity) or half the side length (square con-
tainer).

5.1 Magnetic force distributions of RMF

The influence of the type of the container on the mag-
netic force field is demonstrated in Figs. 5 and 6.

Figure 5: Contours of the Lorentz force in a axisym-
metric cavity.

Figure 6: Contours of the Lorentz force in the square
container.

In both containers, the maxima of the intensity
of the magnetic body force are close to the vertical
walls and the contours of the magnetic force distri-
butions look similar. However, as is expected by the
magnetic force definition, the intensity of the Lorentz
force is higher at the corner of the square container
(non-axisymmetric cavity).
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5.2 The flow driven by the RMF in an ax-
isymmetric cavity

The RMF generates a main rotating flow in the az-
imuthal direction and due to the imbalance between
the magnetic forces and pressure; a weak secondary
flow appears in the vertical direction.

Figure 7: The magnetically driven flows in the cylin-
drical container.

Figure 8: Contours of the rotating flow in the cylindri-
cal cavity.

Figure 7 and 8 show the main rotating flow in dif-
ferent horizontal slices irregularly extracted along the
z-direction and in the vertical slice, respectively. At
Ta = 1 × 104, the velocity field is axisymetricaly
and homogenously distributed. Up to the threshold
of the critical Taylor number, the magnetically driven
flow remains homogenous and axisymetric [1]. To
find more about magnetically driven flows in the tran-
sitional or turbulent flow regime, we refer to our older
publications [5] and [3].

5.3 The flow driven by the RMF in a non-
axisymmetric cavity

While the wide range of various flow studies have
been carried out in the last decades in the field of the
magnetically driven flow in the cylindrical container,
other shape of containers stayed behind.

Figure 9: Contours of the rotating flow at horizontal
slices in the square container.

Figure 10: Contours of the rotating flow at the vertical
slice in the square container.

One reason of the explanation seems to be a lack
of the analytical force formulations. Using the finite-
element code presented above, the time-averaged field
of the magnetic force can be effectively calculated for
any shape of the container. Figures 9 and 10 depict the
main rotating flow insight the square container. The
contours of the velocity field are similar to the ones
found in the cylindrical container, and moreover, weak
flow recirculation can be observed in the corner of the
container.
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6 Conclusion
A computational code based on the finite-element
method designed especially for the magnetically
driven flows was presented. The mathematical model
consisted of the Navier-Stokes equations, continu-
ity equation and equations for the calculation of the
magnetic field. It was discretized using the Finite-
Element Method with SUPG and PSPG stabilization
techniques. These numerical approaches were vali-
dated on the number of various test cases e.g. cylin-
drical container, where time-independent magnetic
forces, electric current and electric potential can be
derived analytically. The practical application of the
computational code was presented on the problem of
the RMF in two different containers, in the axisym-
metric and non-axisymmetric cavity. The significant
influence of both the different containers on the mag-
netic force distribution as well as magnetically driven
flows was discussed briefly.
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