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Abstract: - Proper linear codes play an important role in error detection. They are characterized by an increasing 

probability of undetected error pue(ε,C) and are considered  “good for error detection”. A lot of CRCs commonly used 

to protect data transmission via a variety of field busses are known for being proper. In this paper the weight 

distribution of proper linear codes on a binary symmetric channel without memory is investigated. A proof is given that 

its components are upper bounded by the binomial coefficients in a certain sense. Secondly an upper bound of the tail 

of the binomial is given, and the results are then used to derive estimates of pue(ε,C). Finally, applications  on safety 

integrity levels are studied. 
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1   Introduction 
Let C be a [n, k] linear code on a binary symmetric 

channel without memory, where n is the block length 

and k is the number of data bits. The probability of 

undetected error of such a code is then given by (see  

[14] for example): 
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where  

  Al  = component of the weight distribution of C 

      = number of code words of weight l, 

  ε  = bit error probability, 

  n  = block length. 

  d  = minimum distance of C.  

Clearly the Al are upper bounded by the binomial 

coefficients  
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an inequality representing the “worst case”.  

In several publications ([1], [2], [10], [11], [12]) the 

range of binomiality of a linear code has been 

investigated, i.e. the range of all indices l with Al 

satisfying 
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where r = n – k is the length of the check sum and γ > 0 

is a positive constant. If  C is a cyclic redundancy check 

(CRC) r = n – k is equal to the degree of the polynomial 

generating the CRC. A common result of all papers is 

that there is binomial behavior of Al when l is taken from 

some neighborhood of n/2. Moreover, in each 

subinterval large enough there is an index i such that the 

binomial bound is asymptotically met (see for example 

[1] or [10]).  

 

  

2   Proper Linear Codes  
A linear code C is said to be proper if and only if the 

probability of undetected error pue(ε,C) is an increasing 

function of ε in the interval [0, 1/2].  

Because of 
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for all ε � [0, 1/2] proper linear codes obey the 2
-r 

bound. Those codes are considered “good for error 

detection” (see for example [13]), and they are widely 

used in this field.  

A lot of important CRCs used to protect data 

transmission are known for being proper (at least for 

most block lengths, see [3], [4], [5], [6], [7], [8]). On the 

other hand nothing seems to be known about specific 

properties of the weight distribution of a linear code 

resulting from properness.  

In subsection (3.1) of this paper we shall prove that the 

weight distribution of each proper linear code is showing 

binomial behavior in the sense of (2) for all components 

Al with l ≤ n/2 . In subsection 3.2 we shall give estimates 

of the tail of the binomial, and use it in 3.3 to derive 

upper bounds on the probability of undetected error for 

proper linear codes. Finally the consequences of these 
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estimates for the problem of achieving a specific Safety 

Integrity Level (SIL) are investigated. 

. 

 

3 Binomial Behavior and Properness 
 

 

3.1 The Weight Distribution  
In order to demonstrate our main result we took 

advantage of Stirling’s approximation 
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from which we were able to deduce 

 

Theorem 1: Let C be an arbitrary linear code, then for 

each component Ai  of the weight distribution of C the 

inequality  
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holds. 

Proof: For all l = 1,…n the subsequent inequality is 

obvious  
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Consequently 
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from which, by Stirling’s approximation, we get 
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And then, by the inequality of the arithmetic and 

geometric means 
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Remark 1: Perry in [13] used (4) to find codes not 

satisfying the 2
-r 

bound. We pursued a different plan and 

therefore continued in a different way.  

 

Now we are able to state our main result: 

 

 
Theorem 2: Let C be a proper linear code then each 

component Al  of the weight distribution of C with l ≤ n/2 

is showing binomial behavior, i.e.: 

          .
l

nn
A

rl 







⋅⋅≤

2
π2

121

72
 

Proof: For all l ≤ n/2 we have l/n ≤ ½ and therefore by 

(3) pue(l/n, C) ≤ 2
-r
, from which the statement follows by 

Theorem 1.                                                                      █  

 

Remark 2: As the proof shows, Theorem 2 remains 

valid, if we replace properness by the more general 

condition of C satisfying the 2
-r
 bound. Because of the 

importance of the class of proper linear codes and due to 

the fact that normally properness is used to validate the 

2
-r
 bound we didn’t state Theorem 2 under the most 

general conditions. 

 

As an easy conclusion  of Theorem 1 we now get 

immediately a first simple estimate of the probability of 

undetected error: 

 

Theorem 3: Let C be an arbitrary linear code, then for 

each ε with 0 ≤ ε ≤ 1 the probability of undetected error 

is upper bounded by 
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3.2 The Tail of the Binomial  
 

We now want to apply the statement of Theorem 2 to get 

an upper bound on the probability of undetected error of 

proper linear codes. To this end we need an estimate of 

the tail of the binomial delivered by Theorem 4.  

 

Theorem 4: For all natural numbers q and n with q ≤ n 

and all ε with 0 ≤ ε ≤ 1 the tail of the binomial obeys the 

following inequality: 
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Proof: a) To begin with, let k, n and q be natural 

numbers satisfying k + q ≤ n, with the help of which we 

get an estimate of the binomial coefficients:   
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b) When then focusing onto (5) by means of part a), we 

achieve   
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Now, by inequality (1) and Theorem 4 a simple 

inequality turns out  

Theorem 5: Let C be an arbitrary linear code, then for 

each ε with 0 ≤ ε ≤ 1 the probability of undetected error 

is upper bounded by  
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where d is the minimum distance of C.  
 

Remark 3: If nothing is known about the code but its 

minimum distance d, Theorem 5  is useful for 

calculating maximal block lengths in order to achieve a 

specific upper bound σ on pue(ε,C). You only have to 

choose 
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In fact (7) is used when dealing with safety related 

systems. 

 

 

 

3.3 The Probability of Undetected Error  
 

Now we are in a position to estimate the probability of 

undetected error in the case of proper linear codes. As 

common use  x   has the meaning of the floor function.  

 

Theorem 6: Let C be a proper linear code, then for all ε 
� [0, 1/2] the probability of undetected error obeys: 
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where d is the minimum distance of C, and the 

remainder term Rn(ε) obeys 
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Proof: a) Firstly, let n be even, then by Theorem 2  
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where (by Theorem 4 with q = n/2 and Stirling’s 

approximation)  
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if n ≥ 3. Let now n be odd, then again by Theorem 2 
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where (by Theorem 4 with q = (n - 1)/2) 
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And therefore as in the proof of the “even case” by 

Stirling’s approximation 
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if  n ≥ 4.                                                                           █ 
 

Remark 4: Even for relatively large ε (= 10
-2

) and 

relatively small n (= 40, imagine a payload of 1 byte and 

a CRC-32) the remainder term Rn(ε) is so small (< 10
-26

) 

that it doesn’t carry any weight compared with the first 

term on the right hand side of (8).  

Now, as a consequence of Theorems 4 and  6, an 

analogon of  Theorem 5 for proper linear codes emerges.  

 

Theorem 7: Let C be a proper linear code, then for all ε 
� [0, 1/2] the probability of undetected error is upper 

bounded by: 
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where d is the minimum distance of C, and the 

remainder term Rn(ε) obeys 
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Finally let us state the subsequent remarks, pointing out 

the influence of  properness on the size of the probability 

of undetected error on one hand and on maximal block 

lengths on the other hand 

 

Remark 5: In the case of a CRC of length r and for all n 

not too large, inequality (9) improves inequality (6) by a 

factor of 
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Remark 6: Similar to (6) inequality (9) too is useful for 

calculating maximal block lengths in order to achieve a 

specific upper bound σ on pue(ε,C): 
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Apart from Rn(ε), being small compared with the other 

term on the right hand side of (9), you only have to 

choose 
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and ensure Rn(ε) to be small enough such that (10) is 

fulfilled.  

In the case of a CRC of length r, inequality (11) 

improves inequality (7) by an order of magnitude of 
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3.4 Application to Safety Integrity Levels  
 

As an application of our results, let us now have a closer 

look at data integrity according to IEC 68508.  

According to remark 6 in subsection 3.2 we wanted to 

analyze the effect of properness on maximal block 

lengths achievable for a specific Safety Integrity Level 

(SIL). Safety Integrity Levels are defined by means of 

the number Λ of undetected errors per hour:  

 

1001)-(),(ε3600Λ ⋅⋅⋅⋅ = mνCpue
 

 

where 

     ν    = number of safety related messages per second 

     m   = number of communicating devices 

    100 = 1%-rule 

(Details are outlined in IEC 61508 2000, [9].) For our 

example, we decided to choose ν = 100, a value 

suggested by experience, and m = 2. In this way we get 
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If no details are known about the quality of the 

transmission especially about the electromagnetic 

compatibility (EMC), and nothing can be said about the 

bit-error probability ε, the Technical Control Board of 

Germany requires to do all calculations concerning Λ 

with ε = 10
-2

. Therefore for our analysis we took account 

of this bad value of ε. 
If on the other hand no details are known about the 

weight distribution of the code C, the only chance of 

estimating the probability of undetected error is to use 

(6) or (9).   

We based our calculations on the results of Castagnoli et 

al. in [4] about the CRC-32/6 polynomial. According to 

[4], CRC-32/6 is proper for all n ≤  32 767. It is 

exemplary for a lot of other CRCs for which similar 

results are known (see for example [3], [4], [5], [6], [7], 

[8]). 

By means of (7) and (11) we then derived the content of 

table 1 from the results in [4] about the minimum 

distance d as a function of n.  

 

Table 1: Maximal block lengths for CRC-32/6 

SIL 
        Λ  

high demand 
maxn (7) maxn by (11) 

4         10
-8 

          37          56 

3         10
-7 

          37          66 

2         10
-6 

          39          87 

1         10
-5 

          43          114 

 

Using (7) SIL 3 and 4 are achievable with a payload of 

only 5 bits. In contrast to this fact, with the help of (11) 

they are achievable with a payload of 34 respectively 24 

bits. This result shows the improvement of (11) 

compared with (7) with regard of practical application.  

 

4   Conclusions 
 

Via the binomiality of the weight distribution an upper 

bound on the probability of undetected error of a class of 

codes has been proven, which is important for practical 

applications in safety related systems. The bound can be 

calculated without knowledge of the complete weight 

distribution of the code. Only the knowledge of the 

minimum distance is required. It improves a bound used 

so far in this field.  
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