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Abstract: - Finite part integrals were first introduced by Hadamard in connection with hyperbolic partial 

differential equations. Since then they have been found useful in a number of engineering applications. In this 

paper we develop and compare simple Newton-Cotes type quadrature rules, which are also appropriate for the 

numerical solution of finite part integral equations in one dimension with a double pole singularity. 
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1   Introduction 
The formulation of certain classes of boundary value 

problems in terms of strongly singular integral 

equations is drawing increasing interest. Areas of 

applications are traditionally the Boundary element 

Method, fracture mechanics applications (e.g. 

problems involving cracks with loaded flanks), 

problems of electromagnetic scattering in cavities, 
etc. In all the above, the matter is to evaluate 

efficiently integrals of the type: 

 
( )

( )
( ), ,

b

ma

f x
dx t a b

x t
= ∈

−
∫  

which is defined as follows: 

 

( )
( )

( )
( )

( )
( )

( )

( )
( ) ( )
( )

0

1

2

0

lim

          with  :
1 ! 1 1

x b

b m ma x

ma

m

kkm

m k

k

f x f x
dx dxf x

x t x tdx
x t

x

f x
x

m k k

ε

ε

ε

ε ϕ

ε
ϕ

−

+

→
−

−

−
=

+
− −= =

−
−

=
− − + −

 
 
 
 
 

  

∫ ∫
∫

∑

 

2   Problem Formulation 
Consider the following type of finite part integral: 
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Our goal is to establish a numerical scheme for the 

evaluation of the above integral, i.e. we seek a 
formula of the following type: 
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We propose two different methods to address the 

problem which are described in the following 
subsections. 

In both methods we interpolate the density (or the 

modified density) function using piecewise 
continuous quadratic polynomials. 

 

2.1 Direct density interpolation 
In this method, we generate a uniform sequence of n 

integration points (n odd) and express the density 

function within the segment [ ]2 1 2 1
,

i i
x x− + in the 

following way: 
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where the local interpolation polynomials ( )i

j
N x  

have the following expressions: 
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the quadrature weights become: 
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Using the expressions of the interpolation 

polynomials, it is obvious that it suffices to calculate 

the following integrals (in the finite part sense): 
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Direct calculation of the above yields: 
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Thus, the formulae for the quadrature weights 
become: 
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where ( )
2 2 1
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i i i i

x x hα
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In the above formulae index i ranges from 0 to n and 

the modifications are obvious for the index end 

values. 

 

2.2 Modified density interpolation 
In this method we modify the density function by 

subtracting and adding f (t) inside the integral in (1): 
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The second integral can be calculated analytically: 
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So we just have to numerically approximate the first 

integral, which -provided that f possesses a Holder 

continuous first derivative- is at most weakly 

singular.  

Proceeding the same way as in subsection 2.1, we 

find the following results: 
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 In case that the singularity t does not coincide with 

any integration node, the values of the modified 
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density are calculated directly, but when t coincides 

with an integration node ( jt x= ), then the modified 

density tends to the value of the original density 

derivative at the location of the singularity. In the 

latter case, we approximate the derivative with a 
central difference scheme as follows: 
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Thus, the final numerical integration formulae for 

this method become: 
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where the expressions for the barred weights are 

given by: 
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3   Numerical examples 
In this section we present the results of the methods 

presented in sections 2.1 and 2.2 using the following 

examples (a ≥ 0, b > 0): 
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The method presented in section 2.1 (direct density 

interpolation) has been first applied in its original 

form using a uniform mesh and secondly by 

modifying the mesh in such a way that t is always 
the mid-node of some segment. It is obvious that 

this modification makes the method perform better, 

especially when the number of nodes is small. In 

fact we have a super-convergence behavior in this 

case.  
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Fig.1: Performance of the method in 2.1 and its 

variant 

 

For the first example, Fig. 1 shows the performance 

of the method presented in section 2.1 (in blue) and 
its modified version (purple), i.e. the one obtained 

by forcing t to be a mid-node of some segment. The 

modified version is remarkably better as its 
maximum error is below 2% (n = 9). The method 

presented in section 2.2 is not shown in Fig. 1, as it 

is exact for the specific case (as expected) and it 
would merely obscure the graph.  

 

Fig. 2: All methods for EX-2, t=0.3 

 

In Fig. 2 we present the results of all methods for 

EX-2. It is clear that the modified version of 2.1 

behaves much better than its original counterpart. 

The method 2.2 has the best performance, as 

expected, since it is more accurate by construction 

(the modified density is a polynomial of 1 degree 
lower than the original density). 

 

 
 

 

Fig. 3: All methods for EX-3 

 

 

 

Fig. 4: All methods for EX-4, t = 0.5 

 

 

Fig. 5: All methods for EX-4, t = 0.2 

 

For the example EX-3, the density belongs to the 

class [ ]5 2
1, 2C − . Again modified 2.1 and 2.2 

behave better. The absolute difference between the 
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exact and the numerical values with n = 91 is 0.001. 

The same result is obtained in [2] using the double 

number of nodes (0.001 for n = 192). 

 

Finally, in Figures 4 and 5 we present the results of 
all methods for EX-4, with two different choices for 

the location of the singularity. Again the modified 

version 2.1 and the method in 2.2 perform the best.  
 

 

4   Conclusions 
We have presented two Newton-Cotes type methods 

which are appropriate for the numerical evaluation 

of finite part integrals in one dimension with a 

double pole singularity. The methods are simple (no 

special polynomials required) and relatively 

straightforward and seem to behave satisfactorily in 

a number of cases. The methods are especially 
suitable for the solution of strongly singular integral 

equations.  

Convergence and error analysis, as well as the 

application to the solution of the respective integral 

equations are under development.  
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