
Real-time simulation of concurrent components

OUSMANE KONÉ
University of Bordeaux & Aerospace Valley F-33405 Bordeaux
University of Toulouse & Aerospace Valley F-31062 Toulouse

FRANCE
kone@irit.fr

Abstract: This paper deals with the simulation of interworking components, constrained with hard time require-
ments. Such components are usually involved in embedded applications and process control systems. They can be
interconnected to form powerful, but complex applications. We propose an incremental composition approach of
simulation scenarios and show that the proposed approach provides good results against the complexity involved
in real-time distributed applications model.

Key–Words: Model Simulation, Real-time, Components

1 Introduction
In order to analyse and then show the features of an
application, one can explore a model of the applica-
tion as if it was really running. Simulation scenar-
ios are execution patterns useful to demonstrate the
correctness and the expected requirements of the sys-
tem [6, 4, 8]. They also permit to exhibit the design
errors of the system descriptive model. Moreover, the
scenarios may be replayed against some prototypes or
concrete implementations in order to experiment their
dependability. As the simulation results are used for
assessing system reliability, the design of the simula-
tion approach is itself a important issue. The com-
puted patterns must reflect the soundness of the con-
sidered descriptive model, in terms of interpretation
(semantics), while guaranteeing a good coverage of
the model.

For the analysis of composite (local, distributed)
systems, many approaches are based on the explo-
ration of the product or global model of the com-
ponents descriptive models [2, 9, 3, 5]. This is an
intuitive approach which works well when the anal-
ysed behaviour is of reasonable size. However, with
formalisms such as state and clock based models
(e.g. timed automata), the underlying timed behaviour
model is generally large with a complexity which is
an exponential function depending on the number of
states ns and clocks nc of the descriptive model (We
denote this by Expsem(ns, nc)). This is a limitation
of the previous approaches against real-time.

Our paper brings a contribution to the previous
problem by avoiding the product computation ap-
proach. We propose a new simulation approach based
on (1) grid automata semantics and (2) composition of
previously computed patterns. This enables the design

of simulation scenarios against concurrent real-time
applications, with low cost. Moreover, it allows reuse
of existing simulation scenarios already computed by
other means or tools [10]. Our approach is inspired
by works like [7, 11] (except that those works did not
deal with real-time), but augmented in our paper for
taking into account timing requirements as well as the
inherent time semantics problem, which is addressed
here through grid computation. We exploit the concur-
rent analysis of grid automata based simulation and
the proposed Timed-C method is based on the com-
position of individual scenarios computed by separate
means. We argue that such a method is practical in the
sense that it generates a reasonable number of simula-
tion cases while ensuring a good coverage, powerful
enough to detect potential errors. To illustrate the re-
sults of the method, we also present an example with a
real-time connection system implemented with inter-
connected real-time components.

We introduce some preliminary definitions on the
descriptive formalism used. Then we present the dif-
ferent steps and algorithms of our method which re-
sults against the case study example are presented in
section 4.

2 Models
In this section we present the syntax and semantic of
Communicating Timed Automata (CTA). A CTA is
essentially a channel system modelelling concurrent
interworking timed automata. We use the basic model
of automata by Alur and Dill[1]. For the reader not
familiar with the notion of Timed Automata we give
in the following a short description.

Let R+ be a set of non-negative real numbers and

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 429

let X be a set of non negative real-time valued vari-
ables called clocks. The set of Guards G(X) is de-
fined by the grammar g := x ∼ c | x − y ∼ c |
g ∧ g | true, where x and y ∈ X , c ∈ R+ and
∼∈ {<,≤, >,≥}. We denote by T the finite se-
quences of elements in R+ called time domain, and by
Σ the finite set of actions. A time sequence over T is
a finite no decreasing sequence ρ = t1, t2, . . . , tn and
a timed word w = (a1, t1,), (a2, t2) . . . (an, tn) is an
element of (Σ×R+)∗. A clock valuation is a function
ν : X →R+, if δ ∈ T the ν + δ denotes the valuation
such that for each clock x ∈ X, (ν+δ)(x) = ν(x)+δ.
If r ⊆ X then ν[r := 0] denotes the valuation such
that for each clock x ∈ X \ r, ν[r := 0](x) = ν(x)
and for each clock x ∈ r, ν[r := 0](x) = 0.
[r := ∞]ν denotes the valuation such that for each
clock x ∈ X \ r, [r := ∞]ν(x) = ν(x) and for each
clock x ∈ r, [r :=∞]ν(x) =∞.
Definition 1. A Timed Automaton (TA) is a tuple
A = (L,L0, Lf , X,Σ, E, I), where L is a finite set
of locations, L0(Lf) ⊂ L is a subset of initial (final)
locations, X is a finite set of clocks. Σ is a finite set of
events. If the set of events (actions) is partitioned in
two disjoint subsets Σ? and Σ!, where Σ? is the set of
input actions and Σ! is the set of output actions, the TA
A is called Timed Input Output Automaton (TIOA).
E ⊆ L×G(X)×Σ×R(X)×L is a set of edges. We
write l

a,g,r−−−→ l′ iff (l, a, g, r, l′) ∈ E, where l, l′ ∈ L
are the source and destination locations, g ∈ G(X)
is a conjunction of constraints in G(X), a ∈ Σ is the
action (or event), r ∈ R(X) is the set of clocks to be
reset. I : L→ G(X) assigns invariants to locations.

We use the notation such as l
a−→ (resp. l 6 a−→)

to denote that there exists l′ such that l
a−→ l′ (resp.

there is no such l′). This notation naturally extends

to time sequences. We write l
(a,t)−−−→ if from location

l, a can be executed at time t. A TIOA A is said to
be complete, if it accepts every action in Σ at every
time. It is said to be input-complete if it accepts every
input action in Σ! at every time. A TIOA is called
deterministic if ∀l, l′, l′′ ∈ L · ∀a ∈ Σ · ∀t ∈ R+ ·
l

(a,t)−−−→ l′ ∧ l
(a,t)−−−→ l′′ ⇒ l′ = l′′. It is called non-

blocking if ∀l ∈ L,∀a ∈ Σ! ∪R+ · l a−→.
A Path P in TA A is a finite sequence of consec-

utive transitions l0
g1,a1,r1−−−−−→ l1

g2,a2,r2−−−−−→ l2 It is
said to be Accepting if it starts in an initial location
(l0 ∈ L0) and ends in a final location (lf ∈ Lf).
A Run of the automaton along the path P is a se-
quence of the form (l0, ν0)

g1,a1,r1−−−−−→
t1

(l1, ν1)
g2,a2,r2−−−−−→

t2

(l2, ν2) . . . , where σ = t1, t2 . . . is a time sequence
in T , and νi(i = 1, 2 . . .) is a clock valuation such
that: ν0(x) = 0,∀x ∈ X ; νi−1 + (ti − ti−1) |= gi ;

νi = [ri := 0](νi−1+(ti−ti−1)). The label of the run
is the timed word ω = (a1, t1), (a2, t2), . . . (an, tn).
The set of all timed words in A is denoted Traces(A).
If the path P is accepting the timed word ω then it is
said to be accepted by the TA A.
Definition 2. A network of Communicating Timed
Automata (CTA) is a tuple (A1, A2, . . . , An,
c1,j , c2,j , . . . , cn,j) where each Ai =
(Li, Li0 , Lif , Xi,Σi, Ei, Ii) is a timed automa-
ton and each ci,j , i, j ∈ 1, 2, . . . , n is an unbounded
undirectional channel containing messages sent
from Ai to Aj . The set of transitions of CTA is
E ⊆ L×(1 . . . n× !, ?×Σ)×G(X)×Σ×R(X)×L.
Transitions in CTA are labeled by not only inputs
or outputs but also information about channels. For
example the transition (l1, (4!a), ∅, ∅, l2) of A3 means
that A3 can move from the location l1 to the location
l2 sending the action a into the channel c3,4 (The
transition has no guard, it does not reset any clocks).
When such a transition is taken the action a is put
into the channel c3,4. A transition (l3, (2?b), ∅, ∅, l4)
of A1 means that A1 can move from l3 to l4 and reads
b from c2,1.

Note that there can be pairs of TA which are not
connected by channel (if there is no c1,2 between A1,
and A2), and that there can be channels from the au-
tomaton to itself (System (A1, c1,1)). Such a system
can serve as a model of two timed automata with
shared states connected by channel.

S1 S2

XE1 XE2

X1E X2E

OI21

OI12

X1E = {e4, e6}

XE1= {e1}

Σ! = {e4, e6, i1}

Σ?= {e1, i2, i3}

Σ! =

X2E = {e2}

XE2 = {e3, e5}

Σ?= {e3, e5, i1}

{e2, e2, i3}

OI21 = {i2, i3}

OI12 = {i1}

C12

C21

C1E CE1 CE2C2E

Figure 1: The CTA
(A1, A2, c1,E , cE,1, c1,2, c2,1, c2,E , cE,2)

Case study Example. Figure 1 shows an exam-
ple of communicating timed components. These
components communicate by means of the events
(i1, i2, i3). They interact with their environment
through the events (e1, e2, e3, e4, e5, e6). Events are
exchanged trough six unbounded unidirectional chan-
nels (c1,E , cE,1, c1,2, c2,1, c2,E , cE,2). The behavior of

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 430

l0 l1 l2

l3

l4

e4 / x:=0, y:=0

e5 / x:=0, y:=0

x<2 / e1

x:=0, y:=0

y<1 / i1

x:=0

x<=1 / i2

x>1 / i3

Figure 2: Automaton of the component 1

l’0

l’’4

l’3

l’2l’1

z<1 / i1

z:=0, w:=0

w<2 / e2

z:=0

i3 / z:=0, w:=0

i3 / z:=0, w:=0i2 / z:=0, w:=0

z>2 \ e5

z<=2 / e3

Figure 3: Automaton of the component 2

each component can be modeled by the timed au-
tomata of the figure 2 and 3. For space (and readabil-
ity) reasons, we do not detail the role of the interac-
tions defined in our example. The reader may easily
check that these interactions follow a standard con-
nection service, where the service operation is con-
strained here with real-time requirements. Labels ei

are external service level interactions while ik are in-
ternal interactions exchanged between the concurrent
components.
Definition 3. Let A1 =
(L1, L10 , L1f

, X1,Σ1, E1, I1) and A2 =
(L2, L20 , L2f

, X2,Σ2, E2, I2) be CTA. Let
OI1,2 = Σ!

1 ∩ Σ?
2(OI2,1 = Σ!

2 ∩ Σ?
1) The set of

actions exchanged between A1 and A2 (A2 and A1)
called Internal actions. The concurrent composition
of A1 and A2, denoted A1 ‖ A2 is defined by the de-
rived Timed automaton A = (L,L0, Lf , X,Σ, E, I)
where:

• L = L1 × L2 is the set of Global locations. A
location is a tuple (l1, ω1, l2, ω2).

• L0 = L0
1, ω

0
1, L

0
2ω

0
2 is the initial global location

where ω0
1 = ω0

2 = ∅

• Lf = Lf
1 , ωf

1 , Lf
2 , ωf

2 is the final global location.

• Σ = Σ? ∪Σ! where Σ? = (Σ?
1−OI2,1)∪ (Σ?

2−
OI1,2) and Σ! = (Σ!

1−OI1,2)∪ (Σ!
2−OI2,1) is

the set of Inputs and outputs respectively.

• X = X1 ∪X2 is the set of clocks.

• E is the set of global transitions. A global transi-
tion is a transition between two global locations
caused by a transition in a component of the sys-
tem. Ei is defined by the following rules:

S0 S1 S2 S3

S4

S5

S6

S7

x<2 / e1

x:=0, y:=0

y<1, z<1 / i1

x:=0, w:=0

w<2 / e2

z:=0

z<=2 / e3

z>2 / e5

x<=1 / i2

x>1 / i3

e4 / x:=0 , y:=0

e5 / x:=0 , y:=0

Figure 4: The global automaton

1. (l1
a,g1,r1−−−−→l′1)∧(l2

a,g2,r2−−−−→l′2)

(l1,l2)
a,g1∧g2,r1∪r2−−−−−−−−→(l′1,l′2)

2. (l1
a,g1,r1−−−−→l′1)∧(l2 6

a,g2,r2−−−−→l′2)

(l1,l2)
a,g1,r1−−−−→(l′1,l2)

3. (l1 6
a,g1,r1−−−−→l′1)∧(l2

a,g2,r2−−−−→l′2)

(l1,l2)
a,g1,r1−−−−→(l1,l′2)

• I((l1, l2)) = I(l1)∧I(l2) define the invariants to
locations in A.

As an example, the concurrent composition of the
CTA of the figure1 (model in 2 and 3) can be rep-
resented by the figure4. It represent the resulting be-
havior of the system A = A1 ‖ A2.

The semantic of CTA is an infinite labeled
transition system where each state is a tuple
(l1, ν1, ω1, . . . , ln, νn, ωn), where li is a location of
Ai, νi is the clock valuation and ωk ∈ Σ is the con-
tent of channel ci,j . For analysing such systems fi-
nite abstraction of CTA is required. Grid Automata
GA is a graph in which the infinite behavior of CTA
is abstracted by a finite representation. The grid au-
tomaton is constructed from the region automaton[1]
by representing each region with a finite and represen-
tatives set of clock valuations. The continous domain
of CTA is sampled with the granularity (gr). To cover
all clock regions, the granularity of sampling should
be less or equal to (1

n+1) where n is the nomber of
clocks. A tour in grid automata is a path that starts
and ends at the same state. It is called minimal, if
no edge is contained more than once in the tour. An
initial tour is a tour that starts and ends at the initial
state.
Example. Finite abstraction of TA, Grid Au-
tomata. As the number of clocks in each automaton
is 2, the granularity of sampling is equal to 0.33.
Figures 5 represents the grid automata of compo-
nent 1 in our example. As an example of initial tours
we have (l0, (0, 0), ∅) 0.66−−→ (l0, (0.66, 0.66), e1)

e1−→
(l1, (0, 0), i1)

0.33−−→ (l1, (0.33, 0.33), i1)
i1−→

(l2, (0, 0.33), i2)
i2−→ (l3, (0, 0.33), e4)

0.33−−→

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 431

0.33

e1 i1 i2

0.33

0.33

0.33

0.33

0.33

0.33

0.33

0.33

0.33

0.33

0.33

0.33

e1

e1

e1

e1

e1 i1

i1

i1

e4

e4

e4

e4

i2

i2

i2

l0
l1 l2 l3

n.0.33
n.0.33

i3

e5

0.33

0.33

0.33

l22

l21

l23

l24

l11

l12

l13

l31

l32

l33

l34

l01

l02

l03

l04

l05

l06

Figure 5: an example of finite abstraction of the com-
ponent 1

(l3, (0.33, 0.66), e4)
e4−→ (l0, (0, 0), ∅) , and

(l′0, (0, 0), ∅) 0.99−−→ (l′0, (0.99, 0.99), ∅) i1−→
(l′1, (0, 0), i1)

1.99−−→ (l′1, (1.99, 1.99), i1)
e2−→

(l′2, (0, 1.99), ∅) 0.33−−→ (l′2, (0.33, 1.33), e5)
e5−→

(l4, (0.33, 1.99), ∅) e4−→ (l′0, (0, 0), ∅).

3 Timed C-Method
3.1 Rationale and prerequisite
In general, Communication timed components are
simulated from the global timed automaton con-
structed from the product of all automata in the whole
system. However this approach has some limits; the
combinatory explosion problem where it leads to a
huge number of simulation cases; The indeterminism
due to the concurrency of the composite system; and
the repetition of all simulation cases already executed
at the component level. The Timed C-Method is pro-
posed to avoid this limits. It is applicable when the im-
plementations of the design components remains un-
changed. The Timed C-Method satisfies the following
properties:

• It is not necessary to compute the product of
components (global Automaton);

• Only simulation cases checking the correctness
of the implementation of the composition opera-
tor are generated;

• Simulations already performed at the component
level (only one component) are not repeated.

Definitions: In the following we give some definitions
and notations we use to derive scenarios for CTA.
An augmented timed scenario case (ttc) is an
non empty timed word (a1, t1)(a2, t2), . . . , (an, tn).
An augmented timed scenario suite tts is a non
empty set of augmented timed scenario cases
{ttc1, ttc2, . . . , ttcn}.
The concurrent composition of augmented scenario
cases ttc1 and ttc2, where ttc1 is a timed scenario case
of A1 and ttc2 is the timed scenario case of A2, is a
path cttc1,2 obtained by sequencing the elements in
ttc1 and ttc2 according to the following constraints:

• Any internal input action should be consumed
only after its corresponding internal output ac-
tion is produced (t!a ≥ t?a) where a ∈ Σ.

• The order of timed input actions of ttc1 and ttc2

is preserved ;

• The order of timed output actions of ttc1 and ttc2

is preserved ;

• the result of concurrent composition can be rep-
resented by the timed word (a1, t1)(a2, t2), . . . ,
(an, tn) where t1 ≤ t2 ≤, . . . ,≤ tn.

Examples:
from grid automata of A1 and A2 we can generate the
following augmented timed scenario cases:
- ttc1,1 = (?e1, 0.66)(!i1, 0.99)(?i2, 1.66)(!e4, 1.99)
- ttc2,1 = (?i1, 0.33)(!e2, 1.33)(?e3, 1.66)(!i2, 1.99)
- ttc2,2 = (?i1, 0.99)(!e2, 1.33)(?e3, 1.33)(!i2, 1.66)
- ttc2,3 = (?i1, 0.99)(!e2, 1.33)
The concurrent composition of ttc1,1 and ttc2,1 is
unfeasible because the internal action i1 in ttc2 can
be consumed only before 0.33 tu whereas it is pro-
duced by ttc1 only after 0.99 tu. The concurrent
timed scenario case cttc1,3 = ttc1 ‖ ttc3 =
(?e1, 0.66)(!i1, 0.99)(?i1, 0.99)(!e2, 1.33)(?e3, 1.33)
(!i2, 1.66)(?i2, 1.66)(!e4, 1.99) is a feasible and
meaningful composition of ttc1 and ttc3.
Definition. The concurrent composition of two aug-
mented timed scenario cases is called complete if
all their internal actions are included, and the input
queues of the corresponding TA will be empty after
their execution. Otherwise, it is called incomplete.
For example, the scenario cttc1,3 is complete
but the scenario cttc1,4 = ttc1 ‖ ttc2 =
(?e1, 0.66)(!i1, 0.99)(?i1, 0.99)(!e2, 1.33) is incom-
plete.

3.2 Algorithm based on coverage criterion
To obtain a meaningful composition of CTA, some
criteria should be satisfied; the internal actions of

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 432

either automaton should be consumed by the other
automaton, real time constraints should be respected
when internal inputs (outputs) are consumed (pro-
duced), and the composed system should be free of
internal deadlocks.
To check whether two CTA meet these criteria, we
assume that they are always capable to return (resyn-
chronize) to their initial states. If this assumption is
satisfied, it suffices to consider the initial tours of both
automata, and to check whether for each initial tour,
there exist its corresponding initial tour in the other
automaton such that their concurrent composition
is complete. The initial tour coverage tree is a tree
containing all minimal initial tours such that every
edge is covered at least once and no tour is contained
as a prefix or suffix of another tour. The algorithms 1
and 2 show how to construct the initial tour coverage.

Algorithm 1

Input: AG : Grid Automaton of A
Output: H(si): Minimal tree covers all cycle free
paths of AG leading from each state si to the initial
state s0

1. H(si): Minimal tree covers all cycle free paths
leading from the state si to the initial state s0

2. M(si): The set of states already visited.

3. R(si): The set of successor states of si

4. For each state si.

5. . . . H(si) = si

6. . . . M(si) = {s0, si}.
7. . . . Repeat

8. R(Si) = Succ(si)

9. For each sj ∈ R(si)

10. if {sj} ∩M(si) 6= ∅
11. H(si) ← H(si) ∪ ((si, a, sj) ∧ sj),

where a ∈ Σ ∪ tick (i.e, added the transition
. (si, a, sj) and the state sj to the tree
H(si))

12. continue

13. else

14. M(si)←M(si) ∪ {sj}
15. H(si)← H(si) ∪ ((si, a, sj) ∧ sj)

16. i← j

17. FFor

18. remove all leafs 6= s0 in H(si)

19. return H(si)

20. FFor

l3

e4

e4

e4

e4

l0

l0

l0

l0

0.33

0.33

0.33

l22

i2

0.33

0.33

e50.33

e4

e4

l0

l0

H(l3)

H(l22)

l31

l32

l33

0.33

l24

l32

0.33

l33

l23

i2

l33

e4

l24

i3

l0

l0

l34

l34

Figure 6: Minimal trees of states l3 and l2,2

Example: the minimal trees cover all cycle free paths
leading from the states l3 and l2,2 to the initial state
l0 in the grid automaton of the figure 5 is shown in
Figure 6.
Algorithm 2

Input: AG : Grid Automaton of A and H(si)
Output: ITCT Initial tour coverage tree

1. For each state si.

2. . . . ITCT = s0

3. . . . M = {s0}.

4. . . . Repeat

5. R(Si) = Succ(si)

6. For each sj ∈ R(si)

7. if {sj} ∩M 6= ∅

8. ITCT ← ITCT +((si, a, sj)∧sj),
where a ∈ Σ ∪ tick

9. continue

10. else

11. M ←M ∪ {sj}

12. ITCT ← ITCT +((si, a, sj)∧ sj)

13. i← j

14. FFor

15. For each leaf sk in ITCT

16. . . . sk ← H(sk)

17. return ITCT

18. FFor

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 433

Algorithm 1 construct a minimal tree that can
cover all cycle free paths of AG leading from each
state si to the initial state s0. This tree is used to con-
struct Initial tour coverage tree (Algorithm 2). Both
algorithms 1 and 2 are used to select scenario cases of
the compositional system (Algorithm 3)
Algorithm 3 :

Input: GA1 and GA2 : Grid automata of A1 and A2

Output: ctts1,2 : Augmented timed concurrent sce-
nario suite of the CTA A1 ‖ A2

1. Initialization : ctts1,2 = ∅

2. Construct ITCT1 (resp. ITCT2) from GA1

(resp. GA2); The initial tour coverage tree of A1

(A2) using Algorithms 1 and 2.

3. Extract tts1 (resp. tts2) from ITCT1

(resp.ITCT2) : All accepting paths in ITCT1

4. From tts1(tts2) remove all augmented scenarios
containing only external actions
(Concern only one component but not the com-
position)

5. Remove the maximum suffix containing only ex-
ternal actions.
(Concern only one component but not the com-
position)

6. For each ttc1,i from the resulting tts1, find
the set of corresponding scenario cases (de-
noted tts2,(1,i)) from tts2, such that For each
ttc2,(1,i),j ∈ tts2,1,i , ttc1,i ‖ ttc2,1,i,j is com-
plete.

7. From tts2,(1,i), select only scenario cases such
that the composition cttc1,2,i,k = ttc1,i ‖
ttc2,(1,i),k forms a timed word (i.e, t1 ≤ t2 ≤
, . . . ,≤ tn).

8. ctts1,2 ← ctts1,2 ∪ cttc1,2,i,k

9. Return ctts1,2

4 Results analysis
From the initial tour coverage tree constructed from
grid automaton of the first component (Figure 5), we
can derive the following simulation scenario:

− ttc1,i = (?e1, 0.66)(!i1, 0.66)(?i2, 1.66)(!e4, 1.99)

The set of its corresponding scenario cases denoted
tts2,(1,i) in tts2 is:

− tts2,(1,i) ={

(?i1, 0.00)(!e2, 0.00)(?e3, 0.00)(!i2, 0.00)

(?i1, 0.33)(!e2, 0.33)(?e3, 0.33)(!i2, 0.33) ,

(?i1, 0.66)(!e2, 0.66)(?e3, 0.66)(!i2, 0.66) ,

(?i1, 0.99)(!e2, 0.99)(?e3, 0.99)(!i2, 0.99) ,

(?i1, 0.00)(!e2, 0.33)(?e3, 0.33)(!i2, 0.33) ,

(?i1, 0.00)(!e2, 0.66)(?e3, 0.66)(!i2, 0.66) ,

(?i1, 0.00)(!e2, 0.99)(?e3, 0.99)(!i2, 0.99) ,

(?i1, 0.33)(!e2, 2.33)(?e3, 2.33)(!i2, 2.33) ,

(?i1, 0.66)(!e2, 0.2.66)(?e3, 2.66)(!i2, 2.66) ,

(?i1, 0.66)(!e2, 0.1.66)(?e3, 1.66)(!i2, 1.66) ,

(?i1, 0.66)(!e2, 0.1.99)(?e3, 1.99)(!i2, 1.99) ,

(?i1, 0.99)(!e2, 0.1.99)(?e3, 1.99)(!i2, 1.99) ,

. . . }

From this subset we can derive only three concurrent
simulation cases that meet the conditions of the sec-
tion 3. They are displayed in figure 7.

The reader may easily check that the resulting
patterns are sound in the sense that they actually
correspond to execution schemes of the concurrent
systems presented before in section 2. The result
shows that we did not require to compute the prod-
uct model of the sub-components. The grid compu-
tation of such product model would be as complex as
ExpGrid(25, 4): Indeed, each of the components has
5 states and 2 clocks (Cf section 2, figure 2 and figure
3), which involves a composite model with (2+2 = 4)
clocks, a state space of (5× 5 = 25), and 8 accessible
global states (figure 4). Our method produces a full
coverage simulation patterns with grid automata con-
struction restricted to a complexity of ExpGrid(5, 2)
for each single component, where the component has
5 states and 2 clocks (Cf section 2).

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 434

cttc1,2,1 = (?e1, 0.66)(!i1, 0.66)(?i1, 0.66)(!e2, 0.66)(?e3, 0.66)(!i2, 0.66)(?i2, 1.66)(!e4, 1.99)

cttc1,2,2 = (?e1, 0.66)(!i1, 0.66)(?i1, 0.99)(!e2, 0.99)(?e3, 0.99)(!i2, 0.99)(?i2, 1.66)(!e4, 1.99)

cttc1,2,3 = (?e1, 0.66)(!i1, 0.66)(?i1, 0.66)(!e2, 1.66)(?e3, 1.66)(!i2, 1.66)(?i2, 1.66)(!e4, 1.99)

Figure 7: Simulation cases results

5 Conclusion
For the analysis of concurrent complex applications,
one must investigate design strategies to either reduce
the complexity or to avoid it. The approach presented
in this paper attempts to avoid the complexity related
to the construction of the global product of the com-
municating components. Instead of constructing such
product, we compute simulation scenarios for each
single subsystem. And after that, we compose some
specific patterns selected from each separate suite
that involve actual interaction between the subcompo-
nents. Another advantage of this approach is also the
possibility of reusing existing scenario (pre-computed
by other means) which may be furtherly composed.
The results of the presented method are sound ex-
ecution schemes based on grid semantics, produced
with low complexity. The method has been illustrated
with real-time concurrent component and the compo-
sitional simulation approach shows a promising direc-
tion to the simulation of large behaviour of intercon-
nected real-time components.

References:

[1] R. Alur and D. Dill, A Theory of Timed Au-
tomata. Theoretical Computer Science 126:183-
235, 1994.

[2] Anagnos Introducing a UML model for faster-
than-real-time simulation. Proc. Winter Simula-
tion Conference, Orlando, FL, 2005

[3] R. Cardell-Oliver, Conformance Tests for Real
Time Systems with Timed Automata Specifica-
tion. Formal Aspect of Computing Journal, 350-
371. 2000.

[4] J.S.Carson II. Introduction to modelling and
simulation. Proc. Winter Simulation Confer-
ence, Orlando, Florida, 2005

[5] A. En-Nouaary and G. Liu : Timed Test
Cases Generation Based on MSC-2000 Test
Purposes, in Workshop on Integrated-reliability
with Telecommunications and UML Languages
(WITUL’04), part of the 15th IEEE International
Symposium on Software Reliability Engineering
(ISSRE), Rennes, France, November 2004.

[6] R. M. Fujimoto. Parallel discrete event simu-
lation. Communications of the ACM, 33 (10)
1990.

[7] R. Gotzhein and F. Khendek, Compositional
Testing of Communication Systems, Proceedings
of IFIP Testcom 2006, Lecture Notes in Com-
puter Science 3964, Springer, New York, NY
USA, May 2006.

[8] O.Koné, Controlled simulation of real-time sys-
tems. The Eighth IASTED International Confer-
ence on Control and Applications, Canada, May
2006.

[9] R. Castanet, O. Kone and P. Laurencot, On-
the-Fly Test Generation for Real-Time Proto-
cols. IEEE International Conference on Com-
puter Communication and Networks. Lafayatte,
1998.

[10] J. Kovács, I. Benyó, and G. Lipovszki RST Simu-
lator – An Advanced Tool for Control Education.
IASTED Conference on Applied Simulation and
Modelling - Greece, ASM 2004.

[11] F. Moradi, P. Nordvaller, and R. Ayani Simula-
tion Model Composition Using BOMs Proc. 10-
th DS-RT 2006: Torremolinos, Spain

7th WSEAS International Conference on APPLIED COMPUTER SCIENCE, Venice, Italy, November 21-23, 2007 435

	Text4:

