
A Neural Network Structure with Constant Weights to Implement

Convex Recursive Deletion Regions

CHE-CHERN LIN

National Kaohsiung Normal University

Department of Industrial Technology Education

116 Ho Ping First Road, Kaohsiung
,

TAIWAN, R.O.C.

cclin@nknucc.nknu.edu.tw

Abstract: -A previous study has proposed a constructive algorithm to implement convex recursive deletion

regions via two-layer perceptrons. However, the absolute values of the weights determined by the

constructive algorithm become larger and larger when the number of nested layers of a convex recursive

deletion region increases. The absolute values of the weights also depend on the complexity of the structure of

the convex recursive deletion region. If the structure of the convex recursive deletion region is very

complicated, the absolute values of the weights determined by the constructive algorithm could be very large.

Besides, we still need to use the constructive procedure to get the parameters (weights and thresholds) for the

neural networks. In this paper, we propose a simple three-layer network structure to implement the convex

recursive deletion regions in which all weights of the second and third layers are all 1’s and the thresholds for

the nodes in the second layer are pre-determined according to the structures of the convex recursive deletion

regions. We also provide the activation function for the output node. In brief, all of parameters (weights and

activation functions) in the proposed structure are pre-determined and no constructive algorithm is needed for

solving the convex recursive deletion region problems. We prove the feasibility of the proposed structure and

give an illustrative example to demonstrate how the proposed structure implements the convex recursive

deletion regions.

Key-words: - Multi-layer perceptrons, nested decision region, convex recursive deletion region.

1. Introduction
A multi-perceptron is a layered structure neural

network where weights are used to connect the nodes

between adjacent layers and to perform necessary

computations to implement classification problems.

Training algorithms are used to train the weights and

get the desired mappings from inputs to outputs.

However, using training algorithm to optimize the

weight spends a lot of computational time. Some

studies focused on the partitioning capabilities of

multi-layer perceptrons [1-9]. It has been known

that the first layer of a multi-layer perceptron

produces decision boundaries for classifications and

the rest of layers implement the mappings from the

inputs to the outputs [1]. It has been known that

single-layer percetrons can determine linearly

separable decision regions, two-layer perceptrons can

partition either convex open or closed decision

regions, and three-layer perceptrons are capable of

implementing of any shapes of decision regions [2].

Recent research also indicated that convex recursive

deletion regions can be implemented by two-layer

perceptrons [3]. A general study on the partitioning

capabilities of two-layer perceptrons can be found in

[4] where the authors presented the Weight

Deletion/Selection Algorithm to examine the

feasibility of implementation of decision regions. A

constructive algorithm implementing convex

recursive deletion regions using two-layer

perceptrons has been proposed by [5] where the

constructive algorithm served to determine the

parameters of the two-layer perceptrons. Some

intractable classification problems have been

implemented by multi-layer perceptrons using space

partitioning [6]. For a multi-layer perceptron, if one

uses a constrain-based decomposition training

architecture, the second layer and third layer of a

three-layer perceptron function as logic “AND” and

“OR”, respectively [7].

The convex recursive deletion regions have been

solved by the two-layer perceptrons where a

constructive algorithm is used to determine the

weights and the threshold for the two-layer

perceptrons [5]. However, the absolute values of

the weights determined by the constructive algorithm

become larger and larger when the number of nested

layers of a convex recursive deletion region increases.

The absolute values of the weights also depend on

the complexity of the structure of the convex

recursive deletion region. If the structure of the

Proceedings of the 8th WSEAS International Conference on Neural Networks, Vancouver, British Columbia, Canada, June 19-21, 2007 31

convex recursive deletion region is very complicated,

the absolute values of the weights determined by the

constructive algorithm could be very large. This

might probably cause computational overflowing

problems for integer manipulations. Besides, we

still need to use the constructive procedure to get the

parameters (weights and thresholds) for the neural

networks. In this paper, we propose a simple

three-layer network structure to implement the

convex recursive deletion regions in which all

weights of the second and third layers are all 1’s and

the thresholds for the nodes in the second layer are

pre-determined according to the structures of the

convex recursive deletion regions. We also provide

the activation function for the output node. In brief,

all of parameters (weights and activation functions)

in the proposed structure are pre-determined and no

constructive algorithm is needed for solving the

convex recursive deletion region problems. We also

prove the feasibility of the proposed structure and

give an illustrative example to demonstrate how the

proposed structure implements the convex recursive

deletion regions. Finally, we provide the conceptual

diagram of the hardware implementation of the

proposed network structure.

For the visual reason, in this paper, we use

two-dimensional examples to explain how a

multi-layer perceptron forms the decision boundaries,

and how the proposed network structure implements

the convex recursive deletion regions.

2. Preliminaries
2.1 Forming of Decision Regions
To explain how the first layer of a multi-layer

perceptron forms decision boundaries, we present a

two-class classification example implemented by a

two-layer perceptron. This example is taken from

[1,4] and shown in Fig. 1. Fig. 1(a) is a two-layer

perceptron with two inputs, four nodes in the first

layer (the hidden layer) and one node in the second

layer (the output layer). Fig. 1(b) is the

corresponding decision region where the

two-dimensional input space is formed by the two

inputs. In the figure, four partitioning lines linearly

separate the decision region into 11 sub-regions

which are numbered from 1 to 11. The shaded

sub-regions belong to class A, while the blank ones

belong to class B.

We use four nodes in the first layer to generate

the four partitioning lines, respectively. In this paper,

we use the same labels (z1 to z4) to represent the four

nodes and their corresponding partitioning lines.

Each of partitioning line divides the input space into

two half spaces. We then use ‘0’ and ‘1’ to

represent the two half spaces, respectively. The

second layer makes a final decision by performing

the mapping from inputs to outputs. The weights of

the first layer are pre-determined for a given decision

region. One only needs to determine the second layer

weights of the two layer perceptrons.

We define θ value for a particular sub-region as

follows [4, 10]

∑
=

=
r

k

kkl zw
1

θ (1)

where θ l is the θ value of sub-region l, r is the

number of partitioning lines in the decision region,

and wk is the weight linking first layer node zk to the

output node.

We use a hard limiter as the activation function,

which is give by the following formula [4, 10]:





<

≥
=

hl

hl
y

θθ

θθ

if) B (class 0

if A) (class 1
 (2)

whereθ h is the threshold for the second layer node.

It has been known that to successfully

implement two-class classification problems, the

minimum θ value of sub-regions belonging to class

A must be greater than the maximumθ value of

sub-regions belonging to class B.

2.2 Convex Recursive Deletion Region
Consider an n-dimensional Euclidean space R

n
. Let

C 0 be the input space in R
n
, and C1, C2… , Cp be a

series of nested convex polyhedrons with the

following relation:

pCCCC ⊃⊃⊃⊃ ⋯210 (3)

A convex recursive deletion region S is a set of the

form [5]:

)()()(13210 pp CCCCCCS ∩∪∪∩∪∩= −⋯ (4)

where iC denotes the complement of iC .

Fig. 2 shows the example of a convex recursive

deletion region consisting of three nested convex

polyhedrons: C1, C2, and C3. Each of the three
convex polyhedrons is bounded by a group of

hyper-planes. We call the hyper-planes bounding a

convex polyhedron “bounding hyper-planes” of the

Proceedings of the 8th WSEAS International Conference on Neural Networks, Vancouver, British Columbia, Canada, June 19-21, 2007 32

convex polyhedron. For example, in Fig. 2 (b), C1

is bounded by bounding hyper-planes z1, z2, z3, z4,

and z5. C2 is bounded by bounding hyper-planes z6,

z7, and z8. C3 is bounded by bounding hyper-planes z9,

z10, z11, and z12. A bounding hyper-plane divides the

space into two linearly separable hyper-planes. The

‘1’ side of a bounding hyper-plane of a convex

polyhedron is the separable hyper-plane toward the

convex polyhedron, and the ‘0’ side is the other one.

The ‘1’ sides and ‘0’ sides of the bounding

hyper-planes for C1, C2, and C3 are shown in Fig. 2

(b).

A pattern is in a convex polyhedron if and only

if it is on the ‘1’ sides of all bounding hyper-planes

of the convex polyhedron. We can set up a threshold

in each node in the second layer associated with a

particular convex polyhedron to be the number of the

bounding hyper-planes of the convex polyhedron,

and therefore determine whether the pattern is in the

convex polyhedron or not.

3. The Proposed Network Structure
3.1 Neural Network Structure
The proposed neural network is a three-layer

structured network. Fig. 3 shows the example of the

proposed network. The first layer of the network

serves to form a convex recursive deletion region.

The second layer detects the pattern location in the

convex recursive deletion region. The third layer

determines whether the pattern belongs to class A or

class B according to the pattern location detected by

the second layer. All of the weights in the second

and three layers are set to be 1’s. The threshold for a

node in the second layer (θ h) associated with a

particular convex polyhedron is equal to the number

of the bounding hyper-planes of the convex

polyhedron. The output layer consists of only one

node.

 Let ∑
=

=
q

t

tCv
1

where Ct is a second layer node and q is the number

of the second layer nodes. The activation function

for the output node y is as follows:







∩

∩+
=

B class to tobelongs C if,2mod

A class tobelongs C if,2mod)1(

10

10

Cv

Cv
y (5)

where notation ‘mod’ denotes a modulus (remainder)

operation of two integer numbers.

3.2 Proof of the Network Structure

The proof is straightforward. We explain it by Fig. 2

and Fig. 3. In Fig. 2, the convex recursive deletion

region consists of three nested convex polyhedrons:

C1, C2, and C3. In this case, 10 CC ∩ belongs to

class B. If a pattern is in 10 CC ∩ , none of the

nested convex polyhedrons contains the pattern. v is

therefore equal to 0. By Eq. (5), y = 0 (class B). If a

pattern is in 21 CC ∩ , only C1 contains the pattern.

v is equal to 1, and y = 1 (class A). If a pattern is in

32 CC ∩ , both C1 and C2 contain the pattern. v is

equal to 2, and y = 0 (class B). If a pattern is in 3C ,

all of the three convex polyhedrons (C1, C2, and C3)

contain the pattern. v is equal to 3, and y = 1 (class

A).

One can use the similar procedure to get the

sequentially alternative classification results (0 and 1)

for any convex recursive deletion regions.

Similarly, one can easily prove the feasibility of

the proposed structure when 10 CC ∩ belongs to

class A.

Fig. 3 is the neural network to implement the

convex recursive deletion region shown in Fig. 2. In

Fig. 3, all of the weights of the second and third

layers are 1’s. The thresholds for the nodes of the

second layer and the activation function for the

output node are also demonstrated in the figure.

4. Conclusions
We proposed a simple three-layer network structure

to implement the convex recursive deletion regions

in which all parameters (weights and activation

functions) are pre-determined according to the

structures of the convex recursive deletion regions.

No constructive algorithm is needed for solving the

convex recursive deletion region problems. We used

an illustrative example to explain how the first layer

of a multi-layer perceptron forms the decision

boundaries. We presented the neural network

structure and finally proved the implementation

feasibility of the network structure.

As for the directions of further studies, we

suggest to add more layers to the proposed structure

to improve the partitioning capabilities.

References
[1] J. Makhoul, A. El-Jaroudi, R. Schwartz,

Partitioning Capabilities of Two-layer Neural

Networks, IEEE Trans. on Signal Processing, Vol.

39, No. 6, 1991, pp.1436-1440.

[2] R. P. Lippmann, An Introduction to Computing

with Neural Nets, IEEE ASSP Mag., Vol.4, 1987,

Proceedings of the 8th WSEAS International Conference on Neural Networks, Vancouver, British Columbia, Canada, June 19-21, 2007 33

pp. 4-22.

[3] R. Shonkwiler, Separating the Vertices of

N-cubes by Hyperplanes and its Application to

Artificial Neural Networks, IEEE Trans. on

Neural Networks, Vol. 4, No. 2, 1993, pp.

343-347.

[4] C. Lin and A. El-Jaroudi, An Algorithm to

Determine the Feasibilities and Weights of

Two-Layer Perceptrons for Partitioning and

Classification, Pattern Recognition, Vol. 31, No.

11, 1998, pp. 1613-1625.

[5] C. Cabrelli, U. Molter, and R. Shonkwiler, A

Constructive Algorithm to Solve Convex

recursive deletion (CoRD) Classification

Problems via Two-layer Perceptron Networks,

IEEE Trans. On Neural Networks, Vol. 11, No. 3,

2000, pp. 811-816.

[6] W. Fan and L Zhang, Applying SP-MLP to

Complex Classification Problems, Pattern

Recognition Letters, Vol. 21, 2000, pp. 9-19.

[7] S. Draghici, The Constraint Based

Decomposition (CBD) Training Architecture,

Neural Networks, Vol. 14, 2001, pp. 527-550.

[8] V. Deolalikar, A Two-layer Paradigm Capable of

Forming Arbitrary Decision Regions in Input

Space, IEEE Trans. On Neural Networks, Vol. 13,

No. 1, 2002, pp. 15-21.

[9] G. Huang, Y Chen and H. A. Babri, Classification

Ability of Single Hidden Layer Feedforward

Neural Networks, IEEE Trans. on Neural

Networks, Vol. 11, No. 3, 2000, pp. 799-801.

[10] C. Lin, Partitioning Capabilities of Multi-layer

Perceptrons on Nested Rectangular Decision

Regions Part I: Algorithm, WSEAS Transactions

on Information Science and Applications, Issue 9,

Volume 3, September, 2006, pp. 1674-1680.

[11] C. Lin, Partitioning Capabilities of Multi-layer

Perceptrons on Nested Rectangular Decision

Regions Part II: Properties and Feasibility,

WSEAS Transactions on Information Science and

Applications, Issue 9, Volume 3, September, 2006,

pp. 1681-1687.

[12] C. Lin, Partitioning Capabilities of Multi-layer

Perceptrons on Nested Rectangular Decision

Regions Part III: Applications, WSEAS

Transactions on Information Science and

Applications, Issue 9, Volume 3, September, 2006,

pp. 1688-1694.

[13] C. Lin, A Constructive Algorithm to Implement

Celled Decision Regions Using Two-Layer

Perceptrons, WSEAS Transactions on Information

Science and Applications, Issue 9, Volume 3,

September, 2006, pp. 1654-1660.

The first layer

(hidden layer)
z1 z4 z3 z2

x1 x2

y

 The second layer

(output layer)

The inputs

(a) The two-layer perceptron

x1

x2

5 2

4

3

6

7

8

9
10

11

z1
z1= 1 z2

z2= 0

z2= 1

z3=0

z3= 1
z3

z4 z4= 0
z4= 1

(b) The decision region

w1 w2 w3 w4

1

Fig. 1: The two-layer perceptron and the corresponding decision region (taken from [1, 4]).

z1= 0

Proceedings of the 8th WSEAS International Conference on Neural Networks, Vancouver, British Columbia, Canada, June 19-21, 2007 34

C1

C3

z1 z1= 0
 z1
z = 0 z = 1

z1= 1
z2 z2= 0

 z1
z1= 0 z1= 1

z2= 1 z3
z3= 1 z3= 0

z4

z4= 0

z4= 1

z5
z5= 0

z5= 1

C2

z6= 1 z6= 0

z7 z7= 0

z7= 1

z8 z8= 1

z8= 0

z9
z9= 1 z9= 0

z10 z10=0
z10=1

z11
z11=0 z11=1

z12
z12=0

z12=1

Fig. 2: The convex recursive deletion region and the bounding hyper-planes.

(b) The bounding hyper-planes.

z6

C3

(a) The example of a convex recursive deletion region

where C0 is the input space in R
n
.

C0 (the input space)

C1

C2

21 CC ∩

10 CC ∩

32 CC ∩

21 CC ∩

21 CC ∩

21 CC ∩

Proceedings of the 8th WSEAS International Conference on Neural Networks, Vancouver, British Columbia, Canada, June 19-21, 2007 35

4

z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12

C1

θ h = 5
C2

θ h = 3

C3

θ h = 4

x1 x2

Fig. 3: The proposed network structure.

u1=1 u2=1 u3=1

1 1 1 1 1 1 1 1 1 1 1 1

The inputs

The 1
st
 layer

The 2
nd
 layer

y the output layer (the 3
rd
 layer)

Proceedings of the 8th WSEAS International Conference on Neural Networks, Vancouver, British Columbia, Canada, June 19-21, 2007 36

