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Abstract: -A previous study has proposed a constructive algorithm to implement convex recursive deletion 

regions via two-layer perceptrons.  However, the absolute values of the weights determined by the 

constructive algorithm become larger and larger when the number of nested layers of a convex recursive 

deletion region increases. The absolute values of the weights also depend on the complexity of the structure of 

the convex recursive deletion region.  If the structure of the convex recursive deletion region is very 

complicated, the absolute values of the weights determined by the constructive algorithm could be very large.  

Besides, we still need to use the constructive procedure to get the parameters (weights and thresholds) for the 

neural networks.  In this paper, we propose a simple three-layer network structure to implement the convex 

recursive deletion regions in which all weights of the second and third layers are all 1’s and the thresholds for 

the nodes in the second layer are pre-determined according to the structures of the convex recursive deletion 

regions. We also provide the activation function for the output node. In brief, all of parameters (weights and 

activation functions) in the proposed structure are pre-determined and no constructive algorithm is needed for 

solving the convex recursive deletion region problems. We prove the feasibility of the proposed structure and 

give an illustrative example to demonstrate how the proposed structure implements the convex recursive 

deletion regions. 
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1. Introduction 
A multi-perceptron is a layered structure neural 

network where weights are used to connect the nodes 

between adjacent layers and to perform necessary 

computations to implement classification problems.  

Training algorithms are used to train the weights and 

get the desired mappings from inputs to outputs.  

However, using training algorithm to optimize the 

weight spends a lot of computational time. Some 

studies focused on the partitioning capabilities of 

multi-layer perceptrons [1-9].  It has been known 

that the first layer of a multi-layer perceptron 

produces decision boundaries for classifications and 

the rest of layers implement the mappings from the 

inputs to the outputs [1]. It has been known that 

single-layer percetrons can determine linearly 

separable decision regions, two-layer perceptrons can 

partition either convex open or closed decision 

regions, and three-layer perceptrons are capable of 

implementing of any shapes of decision regions [2]. 

Recent research also indicated that convex recursive 

deletion regions can be implemented by two-layer 

perceptrons [3].  A general study on the partitioning 

capabilities of two-layer perceptrons can be found in 

[4] where the authors presented the Weight 

Deletion/Selection Algorithm to examine the 

feasibility of implementation of decision regions.  A 

constructive algorithm implementing convex 

recursive deletion regions using two-layer 

perceptrons has been proposed by [5] where the 

constructive algorithm served to determine the 

parameters of the two-layer perceptrons. Some 

intractable classification problems have been 

implemented by multi-layer perceptrons using space 

partitioning [6]. For a multi-layer perceptron, if one 

uses a constrain-based decomposition training 

architecture, the second layer and third layer of a 

three-layer perceptron function as logic “AND” and 

“OR”, respectively [7].  

The convex recursive deletion regions have been 

solved by the two-layer perceptrons where a 

constructive algorithm is used to determine the 

weights and the threshold for the two-layer 

perceptrons [5].  However, the absolute values of 

the weights determined by the constructive algorithm 

become larger and larger when the number of nested 

layers of a convex recursive deletion region increases. 

The absolute values of the weights also depend on 

the complexity of the structure of the convex 

recursive deletion region.  If the structure of the 
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convex recursive deletion region is very complicated, 

the absolute values of the weights determined by the 

constructive algorithm could be very large. This 

might probably cause computational overflowing 

problems for integer manipulations.  Besides, we 

still need to use the constructive procedure to get the 

parameters (weights and thresholds) for the neural 

networks.  In this paper, we propose a simple 

three-layer network structure to implement the 

convex recursive deletion regions in which all 

weights of the second and third layers are all 1’s and 

the thresholds for the nodes in the second layer are 

pre-determined according to the structures of the 

convex recursive deletion regions. We also provide 

the activation function for the output node. In brief, 

all of parameters (weights and activation functions) 

in the proposed structure are pre-determined and no 

constructive algorithm is needed for solving the 

convex recursive deletion region problems. We also 

prove the feasibility of the proposed structure and 

give an illustrative example to demonstrate how the 

proposed structure implements the convex recursive 

deletion regions. Finally, we provide the conceptual 

diagram of the hardware implementation of the 

proposed network structure. 

For the visual reason, in this paper, we use 

two-dimensional examples to explain how a 

multi-layer perceptron forms the decision boundaries, 

and how the proposed network structure implements 

the convex recursive deletion regions.   

2. Preliminaries 
2.1 Forming of Decision Regions 
To explain how the first layer of a multi-layer 

perceptron forms decision boundaries, we present a 

two-class classification example implemented by a 

two-layer perceptron. This example is taken from 

[1,4] and shown in Fig. 1. Fig. 1(a) is a two-layer 

perceptron with two inputs, four nodes in the first 

layer (the hidden layer) and one node in the second 

layer (the output layer).  Fig. 1(b) is the 

corresponding decision region where the 

two-dimensional input space is formed by the two 

inputs. In the figure, four partitioning lines linearly 

separate the decision region into 11 sub-regions 

which are numbered from 1 to 11. The shaded 

sub-regions belong to class A, while the blank ones 

belong to class B. 

We use four nodes in the first layer to generate 

the four partitioning lines, respectively. In this paper, 

we use the same labels (z1 to z4) to represent the four 

nodes and their corresponding partitioning lines.  

Each of partitioning line divides the input space into 

two half spaces.  We then use ‘0’ and ‘1’ to 

represent the two half spaces, respectively. The 

second layer makes a final decision by performing 

the mapping from inputs to outputs.  The weights of 

the first layer are pre-determined for a given decision 

region. One only needs to determine the second layer 

weights of the two layer perceptrons.  

We define θ value for a particular sub-region as 

follows [4, 10] 
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where θ l  is the θ value of sub-region l, r is the 

number of partitioning lines in the decision region, 

and wk is the weight linking first layer node zk to the 

output node. 

We use a hard limiter as the activation function, 

which is give by the following formula [4, 10]: 
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whereθ h is the threshold for the second layer node. 

It has been known that to successfully 

implement two-class classification problems, the 

minimum θ value of sub-regions belonging to class 

A must be greater than the maximumθ value of 

sub-regions belonging to class B. 

 

2.2 Convex Recursive Deletion Region  
Consider an n-dimensional Euclidean space R 

n
. Let 

C 0 be the input space in R 
n
, and C1, C2… , Cp  be a 

series of nested convex polyhedrons with the 

following relation: 

 

pCCCC ⊃⊃⊃⊃ ⋯210               (3) 

 

A convex recursive deletion region S is a set of the 

form [5]: 

 

)()()( 13210 pp CCCCCCS ∩∪∪∩∪∩= −⋯   (4) 

 

where iC denotes the complement of iC . 

Fig. 2 shows the example of a convex recursive 

deletion region consisting of three nested convex 

polyhedrons: C1, C2, and C3.  Each of the three 
convex polyhedrons is bounded by a group of 

hyper-planes. We call the hyper-planes bounding a 

convex polyhedron “bounding hyper-planes” of the 
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convex polyhedron.  For example, in Fig. 2 (b), C1 

is bounded by bounding hyper-planes z1, z2, z3, z4, 

and z5. C2 is bounded by bounding hyper-planes z6, 

z7, and z8. C3 is bounded by bounding hyper-planes z9, 

z10, z11, and z12.  A bounding hyper-plane divides the 

space into two linearly separable hyper-planes.  The 

‘1’ side of a bounding hyper-plane of a convex 

polyhedron is the separable hyper-plane toward the 

convex polyhedron, and the ‘0’ side is the other one.  

The ‘1’ sides and ‘0’ sides of the bounding 

hyper-planes for C1, C2, and C3 are shown in Fig. 2 

(b).  

A pattern is in a convex polyhedron if and only 

if it is on the ‘1’ sides of all bounding hyper-planes 

of the convex polyhedron. We can set up a threshold 

in each node in the second layer associated with a 

particular convex polyhedron to be the number of the 

bounding hyper-planes of the convex polyhedron, 

and therefore determine whether the pattern is in the 

convex polyhedron or not. 

 

3. The Proposed Network Structure 
3.1 Neural Network Structure  
The proposed neural network is a three-layer 

structured network. Fig. 3 shows the example of the 

proposed network.  The first layer of the network 

serves to form a convex recursive deletion region.  

The second layer detects the pattern location in the 

convex recursive deletion region.  The third layer 

determines whether the pattern belongs to class A or 

class B according to the pattern location detected by 

the second layer.  All of the weights in the second 

and three layers are set to be 1’s. The threshold for a 

node in the second layer (θ h ) associated with a 

particular convex polyhedron is equal to the number 

of the bounding hyper-planes of the convex 

polyhedron.  The output layer consists of only one 

node. 
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where Ct is a second layer node and q is the number 

of the second layer nodes.  The activation function 

for the output node y is as follows: 
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where notation ‘mod’ denotes a modulus (remainder) 

operation of two integer numbers.  

 

3.2 Proof of the Network Structure  

The proof is straightforward. We explain it by Fig. 2 

and Fig. 3.  In Fig. 2, the convex recursive deletion 

region consists of three nested convex polyhedrons: 

C1, C2, and C3. In this case, 10 CC ∩  belongs to 

class B. If a pattern is in 10 CC ∩ , none of the 

nested convex polyhedrons contains the pattern. v is 

therefore equal to 0. By Eq. (5), y = 0 (class B). If a 

pattern is in 21 CC ∩ , only C1 contains the pattern. 

v is equal to 1, and y = 1 (class A). If a pattern is in 

32 CC ∩ , both C1 and C2 contain the pattern. v is 

equal to 2, and y = 0 (class B). If a pattern is in 3C , 

all of the three convex polyhedrons (C1, C2, and C3) 

contain the pattern. v is equal to 3, and y = 1 (class 

A).  

One can use the similar procedure to get the 

sequentially alternative classification results (0 and 1) 

for any convex recursive deletion regions.       

Similarly, one can easily prove the feasibility of 

the proposed structure when 10 CC ∩  belongs to 

class A.     

Fig. 3 is the neural network to implement the 

convex recursive deletion region shown in Fig. 2. In 

Fig. 3, all of the weights of the second and third 

layers are 1’s.  The thresholds for the nodes of the 

second layer and the activation function for the 

output node are also demonstrated in the figure. 

 

4. Conclusions 
We proposed a simple three-layer network structure 

to implement the convex recursive deletion regions 

in which all parameters (weights and activation 

functions) are pre-determined according to the 

structures of the convex recursive deletion regions. 

No constructive algorithm is needed for solving the 

convex recursive deletion region problems. We used 

an illustrative example to explain how the first layer 

of a multi-layer perceptron forms the decision 

boundaries. We presented the neural network 

structure and finally proved the implementation 

feasibility of the network structure.   

As for the directions of further studies, we 

suggest to add more layers to the proposed structure 

to improve the partitioning capabilities. 
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Fig. 1: The two-layer perceptron and the corresponding decision region (taken from [1, 4]). 
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Fig. 2: The convex recursive deletion region and the bounding hyper-planes.   
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Fig. 3: The proposed network structure. 
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