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Therole of viscousfriction damping in adaptive output feedback
tracking control of manipulators
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MEXICO

Abstract: The trajectory tracking control of robot manipulators untte practical situation in that actuators have
limited power (torque—bounded control) and that only posimeasurements are carried out (output feedback) is
addressed in this paper. Specifically, we show that visatettoh damping is enough for global bounded adaptive

output feedback control of robot manipulators.
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1

Adaptive control of robot manipulators has been an
active research topic in the last 15 years. The main
motivation of this has been the interest in adding a re-
liable degree of robustness to the closed—loop system,
specially in manufacturing system, where the manip-
ulator frequently achieves pick and place tasks of ma-
terials and parts, whereby adaptation of the payload
changes helps to guarantee the motion control. See,
e.g., [4] for a reference on globally asymptotically sta-
ble adaptive algorithms, which guarantee the asymp-
totic tracking of the joint desired trajectory. However,
in most of the adaptive controllers the joint velocity
is assumed to be measurable for feedback. In prac-
tice, the joint velocity measurement might be contam-
inated by noise, hence the control system performance
may be reduced. The presence of noise in the mea-
surements and the discretization of the controller also
limits the values of the controller gains. For these rea-
sons, the problem of designing motion control algo-
rithms that deal with the velocity reconstruction (out-
put feedback) and the parameter adaptation is impor-
tant. Even in the trajectory design for

The problem of adaptive output feedback tracking
control of manipulators consists in designing a control
algorithm by using only joint position measurements
and a parameter estimation update law, so that the er-
ror between the time—varying desired position and the
position of the system goes asymptotically to zero for
a set of initial conditions. This paper addresses this
control problem.

As pointed out in [3], despite the numerous
algorithms of adaptive controllers and of tracking
controller—observer schemes, there are relatively few

I ntroduction

algorithms which combine both adaptive schemes and
velocity reconstruction. Our literature review does not
cover all previous work on adaptive output feedback
tracking control for robots. Only a brief description of
the key results proposed latter than 1996 is provided.
In [3] an adaptive scheme with boundedness of the es-
timated parameters and uniform ultimate boundednes
for tracking and observation errors was proposed. In-
spired in the approach introduced by Loria [8], Zhang
et al. [15] proposed a controller that depends in the
initial condition of a dynamic extension. A redesign
of the approach introduced in [15] is proposed in the
work of Zergerogluet al. [14], but presenting the
global convergence of the position and tracking errors.
Let us notice that these approaches were extended by
Dixon et al. [5] to the problem of adaptive trajectory
tracking control of manipulators with flexible joints
by using only position measurements of the robot ac-
tuators and links. In a similar way, in this work the
global convergence of the link position and velocity
errors was shown.

The main aim of this paper is to deal the problem
of adaptive output feedback tracking control de ma-
nipulators by introducing a controller which achieves
the global convergence result of the position and ve-
locity tracking error with the nice property of produc-
ing saturated torgue input. More specifically, a robot
parameter estimation update law to be used along with
a torque—bounded controller is proposed. A special
tuning of the gains involved in the controller , veloc-
ity error estimator and the update rule, guarantees the
global convergence result.

Notation: Throughout this paper the following
notation will be adopted. ||z|| = VaTz stands
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for the norm of vectorr € IR". \,in{A(z)} and e Property 1. Forallg, ¢, § € IR"™ we have
Avaz{A(z)} denote the minimum and maximum

eigenvalues of a symmetric positive definite ma- M(q)i+C(q,9)q+ 9(q) + Fog =Y (q,4,4)0
trix A(z) € R™" for all z € TR", respectively.

IB(z)]| = \/)\Mam{B(x)TB(x)} stands for the whereY(q,q, G) is an x r regressor matrix and

0 € IR" is the parameter vector containing the

induced norm of a matrixB(z) € IR™*" for all robot and payload parameters.

xz € IR™. In this paper, the notatiohypfunc(x)

denotes a hyperbolic function ofe R, e.g.,tanh(z e Property 2. Forallg, ¢, x,y, z € R", the inertia
andIn(cosh(z)), while the notationHypfunc(z) = and Coriolis matrix (using Christoffel symbols)
diag{hypfunc(zy), ..., hypfunc(z,)}, =z = satisfy

[21,...,2,)7 € IR™, denotes a diagonal matrix

containing as elements the hyperbolic function Mrae{M(@)}Hz|* = 2" M(q)x > Npin{M (q) }|z?,
of each element of the vector. As example, ) 5
Sech?(z) = diag{sech®(z1),...,sech?(z,)}. See M(q) = C(g,4) + C(g,4)7, (6)

the Appendix A for the hyperbolic function properties Clz,y)z = Clz, 2)y,

used in this paper.
Clz,y+z)=C(z,y) + O, 2),

2 Robot dynamicsand control goal 1C(a, DI < kealldl (7)
1.

The dynamics in joint space of a serial—chailink xT §M(q) —C(q,¢)|x=0

robot manipulator considering the presence of friction

at the robot joints can be written as [12],[13] e Property 3. The so—called residual dynamics
M(q)i+Cla,d)i+9(a) + Fg =7 (1) (L. [2]

whereM (q) is then x n symmetric positive definite hd,q) = [M(qa) — M(q))ia

inertia matrix, C'(¢, 4)¢ is then x n vector of cen- ) L

tripetal and Coriolis torquesf, is an x n constant +[C(qa, 4a) — C(q,d)lda + [9(qa) — 9(a)], (8)

positive definite diagonal matrix, which contains the

viscous friction coefficientsr is then x 1 vector of satisfies the following inequality [10]

applied torques inputs andg) is then x 1 vector of . . Sav .

gravitational torques. 1h(q, Dl < ellal] + m” tanh(oq)||
Assuming that only robot joint displacements (9)

q(t) € IR™ are available for measurement and uncer- . _ y

tainty on the robot parameters is present. Then, the whereo is a strictly positive constant,

adaptive output feedback tracking control problem is

to design a control input together with a parame- a = km”(IdHMj oy
ter estimation update law so that the joint displace- 6 = kg+knlldallar + keolldallys,
ments_q_(t) € IR™ converge asympto_tically to the de- B 2k1 + kolldallar + ket lldall3,
sired joint displacementg;(t) € IR", i.e., a = S :
Jim (1) =0, @
where The constants involved in the robot model prop-
() = qa(t) — q(t) erties are defined as follows [6], [10],
denotes the tracking error. 8M”
Throughout this paper we consider thg(t) is ky 2 m [f?%)z H (10)
three times differentiable and
lae®ll < laalr Ve=0, @) ke 2 max [ (o) || (1)
lGa@I < lldallsr YVt =0, 4) 5
Czﬂc 12
where ||¢q|[as > 0 and ||Ggl|as > 0 denote known koo > n [r]nl?fq a H (12)
constants.
The following properties are satisfied for the dy- > 9gi(q)
namic model (1) (see e.g. [9], [4], [13], [12]): kg 2 m \max| =5 (13)
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k1> sup |lg(q)ll, (14)
V geR™
k2 Z )\maz{M(Q)} (15)

where M;;(q) is the ij—element of matrix} (q),
cijk(q) is theijk Christoffel symbol, and;(¢) is the
i—element of vectoy(q).

It is noteworthy that all the constants involved in
Property 3, see equations (10)—(15), can be computed
through rough estimations of the real robot parame-
ters. Then, very poor information of the robot model
is requested to compute the inequality (9). Let us no-
tice that Property 3 has been derived from the results
established in [10]. There, it is stated that

1(q, Q)| < exllgll + dsat(||g]l; o),
where

v
N

Il < o
Il > o

N allq
sat(|q1): @) = { lal

By noting that

(0%
— || tanh(oq)| > sat(||]|;
anh(agy | (oDl > sa (1l )

for any strictly positive constant anda, the inequal-
ity (9) is derived.

3 Proposed controller and analysis

3.1 Adaptive output feedback tracking con-
troller

Consider the control law given by

7 = Y (44, 4a, Ga)0 + K, tanh(d) + K, tanh(oq),
(16)
whereg = ¢4 — ¢q denotes the tracking errok’,
diag{kyi, ..., kon} and K, = diag{kpi,... kpn}
are positive definite matrices; is a strictly positive
constant,? is obtained from the following nonlinear
filter

& = —Atanh(¥), (17)
J = z+Bjq, (18)
whereA = diag{ay,...,a,}, B = diag{bi,...,b,}

are positive definite matrices, afdde R" is the es-
timated parameter vector obtained from a update law.
The real-time implementation in block diagram form
is shown in Figure 1. The notatior/** refers to the
maximum capability of torque provided by the robot
actuator of the joint = 1,...,n.
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Figure 1: Block diagram of the adaptive output feed-
back tracking controller

3.2 Analysis

Our main results on the global adaptive output feed-
back tracking control of robot manipulators are stated
in this Section. In particular, Proposition 1 provides
sufficient conditions for the global convergence of the
position and velocity tracking error by using the con-
trol law (16) together with a update law of the esti-
mated robot parameters.

Consider the following estimated robot parame-
ters update law:

f=T [YT((M, dd»4a)q

t

- [ (V" @ 0) ~ € (a0, ) o) .

(19)
with T" a positive definite matrix and the strictly posi-
tive constant € (&min, Earaz)- The explicit values of
Emin @NdEprq. WIll be defined later.

The closed-loop system can be obtained by sub-
stituting the controller equation (16) into the robots
dynamics (1), using Property 1 of the robot model,
differentiating equation (18) with respect to time, and
using the parameter estimation error definition

6=0—-0 cR", (20)

whose time derivative i§ = —@. Then, we can write

q q
q M(q)~[=C(q,4)q — F.g — K, tanh(d)
d | | _ | —Kptanh(oq) — h(q,q) + Y (qd, dd: Ga)o)]
dt 12 —Atanh(¥) + Bq
0 U[-Y" (g4, 4a> Ga)q
L] L &Y (g4, 44, Ga) tanh(0q)]

(21)
The state space origig” §' 97 07]T = 0 € R3"+
is the unique equilibrium point of the closed—loop sys-
tem (21).
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Let us define the constants

da
no= tanh(ao)’ (22)
Yo = 20+ )\maz{Fv}’ (23)
3= kCl\/ﬁ"' U)\max{M(Q)}’ (24)
a = keilldallwm, (25)

which will be useful in the proof of the following
Proposition.

Proposition 1. Assume that the damping introduced
by the viscous friction coefficients, satisfies

)\mm{Fv} > Cq.

Then, there exist observer ga§re ({mins Emaz) @nd
large enough),,;,{K,} such that the closed—loop
system (21) is globally stable in the Lyapunov sense

[7]. In addition,
q(t)
[cj(t)] =0,
V(t)

while 6(t) remains bounded for all time> 0.
Proof: We propose the following Lyapunov function
candidate

(26)

lim
t—o00

Vi(t, 4, q,9,0) = In(cosh(d;))

q+Z ey, bt

N | =
»Q:'

n

+ Z kp,0 ' In(cosh(cd;))
i=1

.1 .
+¢ tanh(0g)T M (q)g + iaTr—la
where is the positive constant involved in the update

law (??). A lower bound onVi(t, g, G, 4, ) is given
by

q,4,9,0) > 77TP77—|—kab;11n(cosh(7§i))
i=1

1 o~
~07To
+5 ,

Va(t,

(27)

where

NoS cosh(aq»)]
ldl

-]
P:{ U_lAmin{Kp} _%ﬁAmax{M(Q)}}
Ve M)} Iin{M()} |

Property 1 of the robot model and

In
i=1

T

(cosh(z)) I

> ﬂtanh( A Vz=[a

(28)
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were used. IfP is positive definite, then the function
Vi(t,d,q,9,0) is globally positive definite and radi-
ally unbounded. The sufficient and necessary condi-
tion for P to be positive definite is

£ < Vo

)‘min{Kp})‘min{M(Q)}
Avaz{M(q)}

The time derivative ofV;(t,q,q,9,6) along of the
closed-loop systems trajectories (21) is given by

Vi(t,4,4,7,0) = € tanh(0q)" |~ P, — K, tanh(V)

— K, tanh(oq) + C(q, Q)Té — h(q, (j)}

T -~ X T . T - o
+&¢ M(q)Sech?(0g)oq —q Fug—q h(q,q)

—tanh(0)T K, B~' A tanh(?)).

To obtain further conclusions on the closed—loop sta-
bility we compute a upper bound on each term of the
Lyapunov function time derivative:

T = S
—q qu < _)‘min{Fv}Hquzv

~4" 1(@,4) < c1ldl1? + 7 tanh(oq) 1]
—tanh(9)T K, B~ Atanh(d) < —Apin{K,B 1A}
x || tanh(9)||?,
& tanh(0q)" C(g,4)" g < Eker |ldll] tanh(oq)[|]
< korv/nl|q|)? + e[| tanh(aq) | [1g]l,
T ~ S
G M(q)Sech®(0§)0G < £0Amaz{M ()},
—&tanh(0§) K, tanh(9) < EApae{ K, }|| tanh(cq)||
x| tanh(9)]],
—& tanh(0q)" K tanh(0§) < —EAmin{ K, }| tanh(0g)|?,
—§tanh(0§)TFU§ < Eax{ Fo } || tanh(oq)|| Hqu
~Etanh(0q)"h(,q) < &e1| tanh(oq)|lll4ll,
+&71 tanh (o). (29)
The previous bounds have been obtained by using the
inequalities of Property 2 of the robot model, Prop-
erty 3 of the residual dynamidg(g, §), the fact]|g|| <
lldallaz + ||G]|, and properties of the hyperbolic func-
tions, see the Appendix A.
On this way, we are able to write

o

| tanh(cq)]|

y 5590 tanh(oqg
Vi(t,d,,0,0) < [ B | tanh( q)”

]l



Proceedings of the 8th WSEAS International Conference on Automation and Information, Vancouver, Canada, June 19-21, 2007

__[Htanh(qﬁ)H]T(QQ{Htanh(gqﬂ|] (30)

[ tanh (D) I tanh (2)]]

where~i, 72, 73 and ¢; were defined in (22), (23),
(24) and (25), respectively,

: [)‘min{Kp} -]

3 1
@1 = [4 —im i }
2

+ [%[)‘min{Kp} -l _%572 }
_%572 ﬁ)‘mm{Fv} —C — 573 ’
%[AWZW{KP} - ’71] _%)‘maa}{Kv} ]
_%)\max{KU} )\mm{KvB_lA}

where € (0,1). Then, the sufficient condition for
(1 to be positive definite are

o-|

gl
[1 - ﬁ] [)\mm{Kp} - P)/l])\mzﬁ’L{F;)}7

[)\mm{Kp} - 71”ﬁ)\mm{Fv} - Cl]
Amin{Kp} — mlys +73

which are subject to

)\mzn{Kp} > Y1-

Finally, the sufficient and necessary condition €y
to be positive definite is

Q[Amzn{Kp} - 71])\min{KvB71A}

&>

£E<

E<

)\maw{Kv}2
Then, for all
7
[1 - ﬂ] [)‘min{Kp} - 'Yl])‘min{Fv}
<€é<

)

- { [)\mm{Kp} - ’Yl”ﬁ)‘mm{Fv} - Cl]
[)\mm{Kp} - ’71]73 + ’Y%

Q[Amzn{Kp} - ’Yl])\min{KvB_lA}
)\max{KU}Z 7

o1 min {4V p f Amin
Vo Amin{ Ky I\ {M(q)}}7 e

Araz{M (q)}

the matrices, Q1 andQ, are positive definite, which
implies that theV;(¢,q,q,J,0) is globally positive
definite and radially unbounded function, and that
its time derivativeVl(t,cj, ¢,9,0) is globally nega-
tive definite. Therefore, the state space origin of the
closed—loop system (21) is stable in the Lyapunov
sense. Besides, we have that

@ a®* 9" o),
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G757 9T 6T € L3+

From _inequajity (30), it can be show that
G qt)T 91T € L3". Hence, by invok-
ing Barbalat's lemma, we conclude that

q(t)
tlim qt) | =0,
Lo
which completes the proof of Proposition 1.

ANN

Itis possible to show that by using a large enough
value of \,;, { K, } the inequality (31) is easily sat-
isfied. In fact, the inequality (31) suggests a tuning
procedure for obtaining a proper numerical value of
Amin{Kp}. This can be derived from relating the left
and right hand—side of (31).

With relation to the result stated in Proposition 1,
in the paper [11] the global stability of a non—adaptive
controller was shown by using the assumption that
high enough damping of the viscous friction coeffi-
cients is present.

4 Conclusion

This paper addressed the tracking control of robot ma-
nipulators by using only joint position measurements
(output feedback tracking control). This paper pro-

posed a new design considering the practical situation
that the robot is subject to constrained torques. The
stability analysis of the closed—loop system coming

from a controller/observer scheme was shown. Be-
sides, we also proved that the position and velocity
error signals converge to zero for any initial condition

of the closed—loop system.
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