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Abstract:The trajectory tracking control of robot manipulators under the practical situation in that actuators have
limited power (torque–bounded control) and that only position measurements are carried out (output feedback) is
addressed in this paper. Specifically, we show that viscous friction damping is enough for global bounded adaptive
output feedback control of robot manipulators.
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1 Introduction

Adaptive control of robot manipulators has been an
active research topic in the last 15 years. The main
motivation of this has been the interest in adding a re-
liable degree of robustness to the closed–loop system,
specially in manufacturing system, where the manip-
ulator frequently achieves pick and place tasks of ma-
terials and parts, whereby adaptation of the payload
changes helps to guarantee the motion control. See,
e.g., [4] for a reference on globally asymptotically sta-
ble adaptive algorithms, which guarantee the asymp-
totic tracking of the joint desired trajectory. However,
in most of the adaptive controllers the joint velocity
is assumed to be measurable for feedback. In prac-
tice, the joint velocity measurement might be contam-
inated by noise, hence the control system performance
may be reduced. The presence of noise in the mea-
surements and the discretization of the controller also
limits the values of the controller gains. For these rea-
sons, the problem of designing motion control algo-
rithms that deal with the velocity reconstruction (out-
put feedback) and the parameter adaptation is impor-
tant. Even in the trajectory design for

The problem of adaptive output feedback tracking
control of manipulators consists in designing a control
algorithm by using only joint position measurements
and a parameter estimation update law, so that the er-
ror between the time–varying desired position and the
position of the system goes asymptotically to zero for
a set of initial conditions. This paper addresses this
control problem.

As pointed out in [3], despite the numerous
algorithms of adaptive controllers and of tracking
controller–observer schemes, there are relatively few

algorithms which combine both adaptive schemes and
velocity reconstruction. Our literature review does not
cover all previous work on adaptive output feedback
tracking control for robots. Only a brief description of
the key results proposed latter than 1996 is provided.
In [3] an adaptive scheme with boundedness of the es-
timated parameters and uniform ultimate boundednes
for tracking and observation errors was proposed. In-
spired in the approach introduced by Loria [8], Zhang
et al. [15] proposed a controller that depends in the
initial condition of a dynamic extension. A redesign
of the approach introduced in [15] is proposed in the
work of Zergerogluet al. [14], but presenting the
global convergence of the position and tracking errors.
Let us notice that these approaches were extended by
Dixon et al. [5] to the problem of adaptive trajectory
tracking control of manipulators with flexible joints
by using only position measurements of the robot ac-
tuators and links. In a similar way, in this work the
global convergence of the link position and velocity
errors was shown.

The main aim of this paper is to deal the problem
of adaptive output feedback tracking control de ma-
nipulators by introducing a controller which achieves
the global convergence result of the position and ve-
locity tracking error with the nice property of produc-
ing saturated torque input. More specifically, a robot
parameter estimation update law to be used along with
a torque–bounded controller is proposed. A special
tuning of the gains involved in the controller , veloc-
ity error estimator and the update rule, guarantees the
global convergence result.

Notation: Throughout this paper the following
notation will be adopted. ‖x‖ =

√
xT x stands
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for the norm of vectorx ∈ IRn. λmin{A(x)} and
λMax{A(x)} denote the minimum and maximum
eigenvalues of a symmetric positive definite ma-
trix A(x) ∈ IRn×n for all x ∈ IRn, respectively.

‖B(x)‖ =
√

λMax{B(x)T B(x)} stands for the

induced norm of a matrixB(x) ∈ IRm×n for all
x ∈ IRn. In this paper, the notationhypfunc(x)
denotes a hyperbolic function ofx ∈ IR, e.g.,tanh(x)
and ln(cosh(x)), while the notationHypfunc(z) =
diag{hypfunc(z1), . . . ,hypfunc(zn)}, z =
[z1, . . . , zn]T ∈ IRn, denotes a diagonal matrix
containing as elements the hyperbolic function
of each element of the vectorz. As example,
Sech2(z) = diag{sech2(z1), . . . , sech

2(zn)}. See
the Appendix A for the hyperbolic function properties
used in this paper.

2 Robot dynamics and control goal
The dynamics in joint space of a serial–chainn-link
robot manipulator considering the presence of friction
at the robot joints can be written as [12],[13]

M(q)q̈ + C(q, q̇)q̇ + g(q) + Fv q̇ = τ (1)

whereM(q) is then × n symmetric positive definite
inertia matrix,C(q, q̇)q̇ is the n × n vector of cen-
tripetal and Coriolis torques,Fv is a n × n constant
positive definite diagonal matrix, which contains the
viscous friction coefficients,τ is then × 1 vector of
applied torques inputs andg(q) is then × 1 vector of
gravitational torques.

Assuming that only robot joint displacements
q(t) ∈ IRn are available for measurement and uncer-
tainty on the robot parameters is present. Then, the
adaptive output feedback tracking control problem is
to design a control inputτ together with a parame-
ter estimation update law so that the joint displace-
mentsq(t) ∈ IRn converge asymptotically to the de-
sired joint displacementsqd(t) ∈ IRn, i.e.,

lim
t→∞

q̃(t) = 0, (2)

where
q̃(t) = qd(t) − q(t)

denotes the tracking error.
Throughout this paper we consider thatqd(t) is

three times differentiable and

‖q̇d(t)‖ ≤ ‖q̇d‖M ∀ t ≥ 0, (3)

‖q̈d(t)‖ ≤ ‖q̈d‖M ∀ t ≥ 0, (4)

where‖q̇d‖M > 0 and ‖q̈d‖M > 0 denote known
constants.

The following properties are satisfied for the dy-
namic model (1) (see e.g. [9], [4], [13], [12]):

• Property 1. For all q, q̇, q̈ ∈ IRn we have

M(q)q̈ + C(q, q̇)q̇ + g(q) + Fv q̇ = Y (q, q̇, q̈)θ

whereY (q, q̇, q̈) is an × r regressor matrix and
θ ∈ IRr is the parameter vector containing the
robot and payload parameters.

• Property 2. For allq, q̇, x, y, z ∈ IRn, the inertia
and Coriolis matrix (using Christoffel symbols)
satisfy

λMax{M(q)}‖x‖2 ≥ xT M(q)x ≥ λmin{M(q)}‖x‖2,
(5)

Ṁ(q) = C(q, q̇) + C(q, q̇)T , (6)

C(x, y)z = C(x, z)y,

C(x, y + z) = C(x, y) + C(x, z),

‖C(q, q̇)‖ ≤ kC1‖q̇‖, (7)

xT

[

1

2
Ṁ(q) − C(q, q̇)

]

x = 0

• Property 3. The so–called residual dynamics
[1], [2]

h(q̃, ˙̃q) = [M(qd) − M(q)]q̈d

+[C(qd, q̇d)−C(q, q̇)]q̇d + [g(qd)− g(q)], (8)

satisfies the following inequality [10]

‖h(q̃, ˙̃q)‖ ≤ c1‖ ˙̃q‖ +
δα

tanh(ασ)
‖ tanh(σq̃)‖

(9)

whereσ is a strictly positive constant,

c1 = kC1‖q̇d‖M ,

δ = kg + kM‖q̇d‖M + kC2‖q̇d‖2
M ,

α = 2
k1 + k2‖q̈d‖M + kC1‖q̇d‖2

M

δ
.

The constants involved in the robot model prop-
erties are defined as follows [6], [10],

kM ≥ n2

[

max
i,j,k,q

∣

∣

∣

∣

∂Mij(q)

∂qk

∣

∣

∣

∣

]

(10)

kC1 ≥ n2

[

max
i,j,k,q

| cijk(q) |
]

(11)

kC2 ≥ n3

[

max
i,j,k,l,q

∣

∣

∣

∣

∂cijk(q)

∂ql

∣

∣

∣

∣

]

(12)

kg ≥ n

[

max
i,j,q

∣

∣

∣

∣

∣

∂gi(q)

∂qj

∣

∣

∣

∣

∣

]

(13)
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k1 ≥ sup
∀ q∈IRn

‖g(q)‖, (14)

k2 ≥ λmax{M(q)} (15)

where Mij(q) is the ij–element of matrixM(q),
cijk(q) is theijk Christoffel symbol, andgi(q) is the
i–element of vectorg(q).

It is noteworthy that all the constants involved in
Property 3, see equations (10)–(15), can be computed
through rough estimations of the real robot parame-
ters. Then, very poor information of the robot model
is requested to compute the inequality (9). Let us no-
tice that Property 3 has been derived from the results
established in [10]. There, it is stated that

‖h(q̃, ˙̃q)‖ ≤ c1‖ ˙̃q‖ + δsat(‖q̃‖;α),

where

sat(‖q̃‖;α) =

{

α‖q̃‖ ∀ ‖q̃‖ ≤ α,

α ∀ ‖q̃‖ > α.

By noting that

α

tanh(ασ)
‖ tanh(σq̃)‖ ≥ sat(‖q̃‖;α)

for any strictly positive constantσ andα, the inequal-
ity (9) is derived.

3 Proposed controller and analysis

3.1 Adaptive output feedback tracking con-
troller

Consider the control law given by

τ = Y (qd, q̇d, q̈d)θ̂ + Kv tanh(ϑ̃) + Kp tanh(σq̃),
(16)

whereq̃ = qd − q denotes the tracking error,Kv =
diag{kv1, . . . , kvn} and Kp = diag{kp1, . . . , kpn}
are positive definite matrices,σ is a strictly positive
constant,ϑ̃ is obtained from the following nonlinear
filter

ẋ = −A tanh(ϑ̃), (17)

ϑ̃ = x + Bq̃, (18)

whereA = diag{a1, . . . , an}, B = diag{b1, . . . , bn}
are positive definite matrices, and̂θ ∈ IRr is the es-
timated parameter vector obtained from a update law.
The real–time implementation in block diagram form
is shown in Figure 1. The notationτMax

i refers to the
maximum capability of torque provided by the robot
actuator of the jointi = 1, . . . , n.

Figure 1: Block diagram of the adaptive output feed-
back tracking controller

3.2 Analysis
Our main results on the global adaptive output feed-
back tracking control of robot manipulators are stated
in this Section. In particular, Proposition 1 provides
sufficient conditions for the global convergence of the
position and velocity tracking error by using the con-
trol law (16) together with a update law of the esti-
mated robot parameters.

Consider the following estimated robot parame-
ters update law:

θ̂ = Γ
[

Y T (qd, q̇d, q̈d)q̃

−
∫ t

0

{

Ẏ T (qd, q̇d, q̈d)q̃ − ξY T (qd, q̇d, q̈d) tanh(σq̃)
}

dt

]

,

(19)
with Γ a positive definite matrix and the strictly posi-
tive constantξ ∈ (ξmin, ξMax). The explicit values of
ξmin andξMax will be defined later.

The closed–loop system can be obtained by sub-
stituting the controller equation (16) into the robots
dynamics (1), using Property 1 of the robot model,
differentiating equation (18) with respect to time, and
using the parameter estimation error definition

θ̃ = θ − θ̂ ∈ IRr, (20)

whose time derivative iṡ̃θ = − ˙̂
θ. Then, we can write

d

dt



















q̃
˙̃q

ϑ̃

θ̃



















=



















˙̃q
M(q)−1[−C(q, q̇) ˙̃q − Fv

˙̃q − Kv tanh(ϑ̃)
−Kp tanh(σq̃) − h(q̃, ˙̃q) + Y (qd, q̇d, q̈d)θ̃]

−A tanh(ϑ̃) + B ˙̃q
Γ[−Y T (qd, q̇d, q̈d) ˙̃q

−ξY T (qd, q̇d, q̈d) tanh(σq̃)]



















(21)

The state space origin[q̃T ˙̃q
T

ϑ̃T θ̃T ]T = 0 ∈ IR3n+r

is the unique equilibrium point of the closed–loop sys-
tem (21).
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Let us define the constants

γ1 =
δα

tanh(ασ)
, (22)

γ2 = 2c1 + λmax{Fv}, (23)

γ3 = kC1

√
n + σλmax{M(q)}, (24)

c1 = kC1‖q̇d‖M , (25)

which will be useful in the proof of the following
Proposition.
Proposition 1. Assume that the damping introduced
by the viscous friction coefficientsFv satisfies

λmin{Fv} > c1. (26)

Then, there exist observer gainξ ∈ (ξmin, ξmax) and
large enoughλmin{Kp} such that the closed–loop
system (21) is globally stable in the Lyapunov sense
[7]. In addition,

lim
t→∞





q̃(t)
˙̃q(t)
ϑ̃(t)



 = 0,

while θ̃(t) remains bounded for all timet ≥ 0.
Proof: We propose the following Lyapunov function
candidate

V1(t, q̃, ˙̃q, ϑ̃, θ̃) =
1

2
˙̃q
T
M(q) ˙̃q+

n
∑

i=1

kvi
b−1
i ln(cosh(ϑ̃i))

+
n

∑

i=1

kpi
σ−1 ln(cosh(σq̃i))

+ξ tanh(σq̃)T M(q) ˙̃q +
1

2
θ̃T Γ−1θ̃

whereξ is the positive constant involved in the update
law (??). A lower bound onV1(t, q̃, ˙̃q, ϑ̃, θ̃) is given
by

V1(t, q̃, ˙̃q, ϑ̃, θ̃) ≥ ηT Pη +
n

∑

i=1

kvib
−1
i ln(cosh(ϑ̃i))

+
1

2
θ̃TΓθ̃, (27)

where

η =

[

√

∑n
i=1 ln(cosh(σq̃i))

‖ ˙̃q‖

]

P =

[

σ−1λmin{Kp} − ξ
2

√
2λmax{M(q)}

− ξ
2

√
2λmax{M(q)} 1

2
λmin{M(q)}

]

,

Property 1 of the robot model and
√

√

√

√

n
∑

i=1

ln(cosh(zi)) ≥
1√
2
‖ tanh(z)‖ ∀ z = [z1 · · · zn]T ,

(28)

were used. IfP is positive definite, then the function
V1(t, q̃, ˙̃q, ϑ̃, θ̃) is globally positive definite and radi-
ally unbounded. The sufficient and necessary condi-
tion for P to be positive definite is

ξ <

√

σ−1λmin{Kp}λmin{M(q)}
λMax{M(q)} .

The time derivative ofV1(t, q̃, ˙̃q, ϑ̃, θ̃) along of the
closed–loop systems trajectories (21) is given by

V̇1(t, q̃, ˙̃q, ϑ̃, θ̃) = ξ tanh(σq̃)T
[

−Fv
˙̃q − Kv tanh(ϑ̃)

−Kp tanh(σq̃) + C(q, q̇)T ˙̃q − h(q̃, ˙̃q)
]

+ξ ˙̃q
T
M(q)Sech2(σq̃)σ ˙̃q − ˙̃q

T
Fv

˙̃q − ˙̃q
T
h(q̃, ˙̃q)

− tanh(ϑ̃)T KvB
−1A tanh(ϑ̃).

To obtain further conclusions on the closed–loop sta-
bility we compute a upper bound on each term of the
Lyapunov function time derivative:

− ˙̃q
T
Fv

˙̃q ≤ −λmin{Fv}‖ ˙̃q‖2,

− ˙̃q
T
h(q̃, ˙̃q) ≤ c1‖ ˙̃q‖2 + γ1‖ tanh(σq̃)‖‖ ˙̃q‖,

− tanh(ϑ̃)T KvB
−1A tanh(ϑ̃) ≤ −λmin{KvB

−1A}

×‖ tanh(ϑ̃)‖2,

ξ tanh(σq̃)T C(q, q̇)T ˙̃q ≤ ξkC1‖q̇‖‖ tanh(σq̃)‖‖ ˙̃q‖

≤ ξkC1

√
n‖ ˙̃q‖2 + ξc1‖ tanh(σq̃)‖‖ ˙̃q‖,

ξ ˙̃q
T
M(q)Sech2(σq̃)σ ˙̃q ≤ ξσλmax{M(q)}‖ ˙̃q‖2,

−ξ tanh(σq̃)Kv tanh(ϑ̃) ≤ ξλmax{Kv}‖ tanh(σq̃)‖

×‖ tanh(ϑ̃)‖,

−ξ tanh(σq̃)T Kp tanh(σq̃) ≤ −ξλmin{Kp}‖ tanh(σq̃)‖2,

−ξ tanh(σq̃)T Fv
˙̃q ≤ ξλmax{Fv}‖ tanh(σq̃)‖‖ ˙̃q‖,

−ξ tanh(σq̃)T h(q̃, ˙̃q) ≤ ξc1‖ tanh(σq̃)‖‖ ˙̃q‖,
+ξγ1‖ tanh(σq̃)‖2. (29)

The previous bounds have been obtained by using the
inequalities of Property 2 of the robot model, Prop-
erty 3 of the residual dynamicsh(q̃, ˙̃q), the fact‖q̇‖ ≤
‖q̇d‖M + ‖ ˙̃q‖, and properties of the hyperbolic func-
tions, see the Appendix A.

On this way, we are able to write

V̇1(t, q̃, ˙̃q, ϑ̃, θ̃) ≤ −
[ ‖ tanh(σq̃)‖

‖ ˙̃q‖

]T

Q1

[ ‖ tanh(σq̃)‖
‖ ˙̃q‖

]
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−
[ ‖ tanh(σq̃)‖
‖ tanh(ϑ̃)‖

]T

Q2

[ ‖ tanh(σq̃)‖
‖ tanh(ϑ̃)‖

]

(30)

whereγ1, γ2, γ3 and c1 were defined in (22), (23),
(24) and (25), respectively,

Q1 =

[ ξ
4
[λmin{Kp} − γ1] −1

2
γ1

−1

2
γ1 [1 − β]λmin{Fv}

]

+

[ ξ
4
[λmin{Kp} − γ1] −1

2
ξγ2

−1

2
ξγ2 βλmin{Fv} − c1 − ξγ3

]

,

Q2 =

[ ξ
2
[λmin{Kp} − γ1] − ξ

2
λmax{Kv}

− ξ
2
λmax{Kv} λmin{KvB

−1A}

]

whereβ ∈ (0, 1). Then, the sufficient condition for
Q1 to be positive definite are

ξ >
γ2
1

[1 − β][λmin{Kp} − γ1]λmin{Fv}
,

ξ <
[λmin{Kp} − γ1][βλmin{Fv} − c1]

[λmin{Kp} − γ1]γ3 + γ2
2

,

which are subject to

λmin{Kp} > γ1.

Finally, the sufficient and necessary condition forQ2

to be positive definite is

ξ <
2[λmin{Kp} − γ1]λmin{KvB

−1A}
λmax{Kv}2

Then, for all

γ2
1

[1 − β][λmin{Kp} − γ1]λmin{Fv}

< ξ <

min

{

[λmin{Kp} − γ1][βλmin{Fv} − c1]

[λmin{Kp} − γ1]γ3 + γ2
2

,

2[λmin{Kp} − γ1]λmin{KvB
−1A}

λmax{Kv}2
,

√

σ−1λmin{Kp}λmin{M(q)}
λMax{M(q)}







, (31)

the matricesP , Q1 andQ2 are positive definite, which
implies that theV1(t, q̃, ˙̃q, ϑ̃, θ̃) is globally positive
definite and radially unbounded function, and that
its time derivativeV̇1(t, q̃, ˙̃q, ϑ̃, θ̃) is globally nega-
tive definite. Therefore, the state space origin of the
closed–loop system (21) is stable in the Lyapunov
sense. Besides, we have that

[q̃(t)T ˙̃q(t)T ϑ̃(t)T θ̃(t)T ]T ,

[ ˙̃q(t)T ¨̃q(t)T ˙̃
ϑ(t)T ˙̃

θ(t)T ]T ∈ L3n+r
∞ .

From inequality (30), it can be show that
[q̃(t)T ˙̃q(t)T ϑ̃(t)T ]T ∈ L3n

2 . Hence, by invok-
ing Barbalat’s lemma, we conclude that

lim
t→∞





q̃(t)
˙̃q(t)
ϑ̃(t)



 = 0,

which completes the proof of Proposition 1.
△△△

It is possible to show that by using a large enough
value ofλmin{Kp} the inequality (31) is easily sat-
isfied. In fact, the inequality (31) suggests a tuning
procedure for obtaining a proper numerical value of
λmin{Kp}. This can be derived from relating the left
and right hand–side of (31).

With relation to the result stated in Proposition 1,
in the paper [11] the global stability of a non–adaptive
controller was shown by using the assumption that
high enough damping of the viscous friction coeffi-
cients is present.

4 Conclusion
This paper addressed the tracking control of robot ma-
nipulators by using only joint position measurements
(output feedback tracking control). This paper pro-
posed a new design considering the practical situation
that the robot is subject to constrained torques. The
stability analysis of the closed–loop system coming
from a controller/observer scheme was shown. Be-
sides, we also proved that the position and velocity
error signals converge to zero for any initial condition
of the closed–loop system.
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